

Sparse Spanners in Temporal Cliques and Where to Find Them

September 3, 2024

Sebastian Angrick, **Ben Bals**, Tobias Friedrich,
Hans Gawendowicz, Niko Hastrich, Nicolas Klodt,
Pascal Lenzner, Jonas Schmidt, George Skretas,
Armin Wells

Hasso Plattner Institute,
University of Potsdam

Overview

- Short introduction to temporal graphs

Overview

- Short introduction to temporal graphs
- Spanners in temporal graphs

Overview

- Short introduction to temporal graphs
- Spanners in temporal graphs
- "How to Reduce Temporal Cliques to Find Sparse Spanners"

Overview

- Short introduction to temporal graphs
- Spanners in temporal graphs
- "How to Reduce Temporal Cliques to Find Sparse Spanners"
- Summary and next steps

Overview

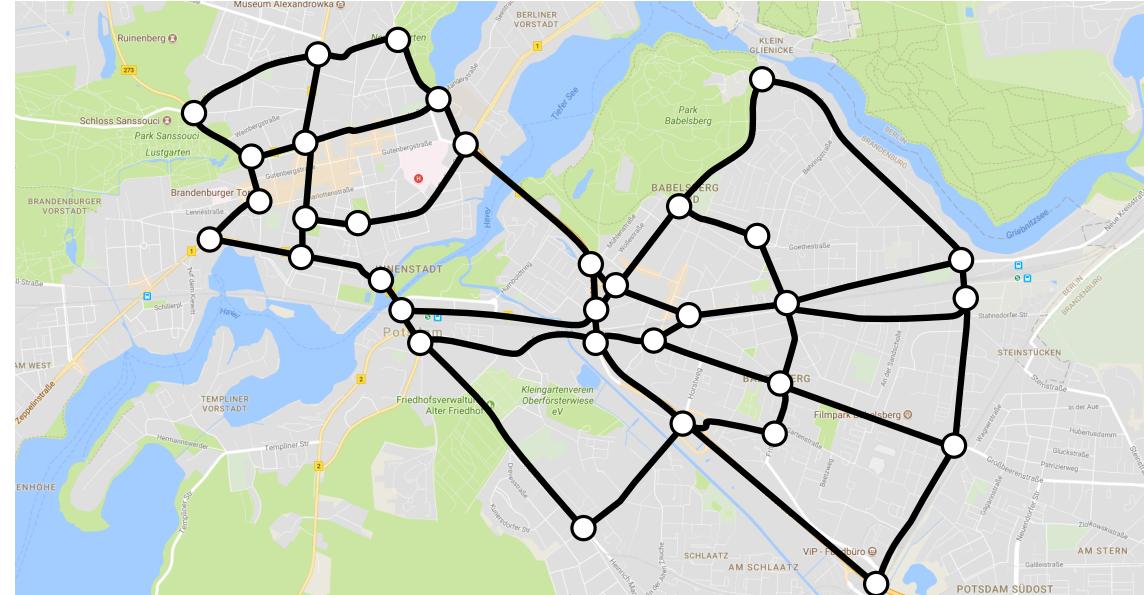
- Short introduction to temporal graphs
- Spanners in temporal graphs
- "How to Reduce Temporal Cliques to Find Sparse Spanners"
- Summary and next steps

Questions are very welcome!

Temporal Graphs—Motivation

Static Graphs

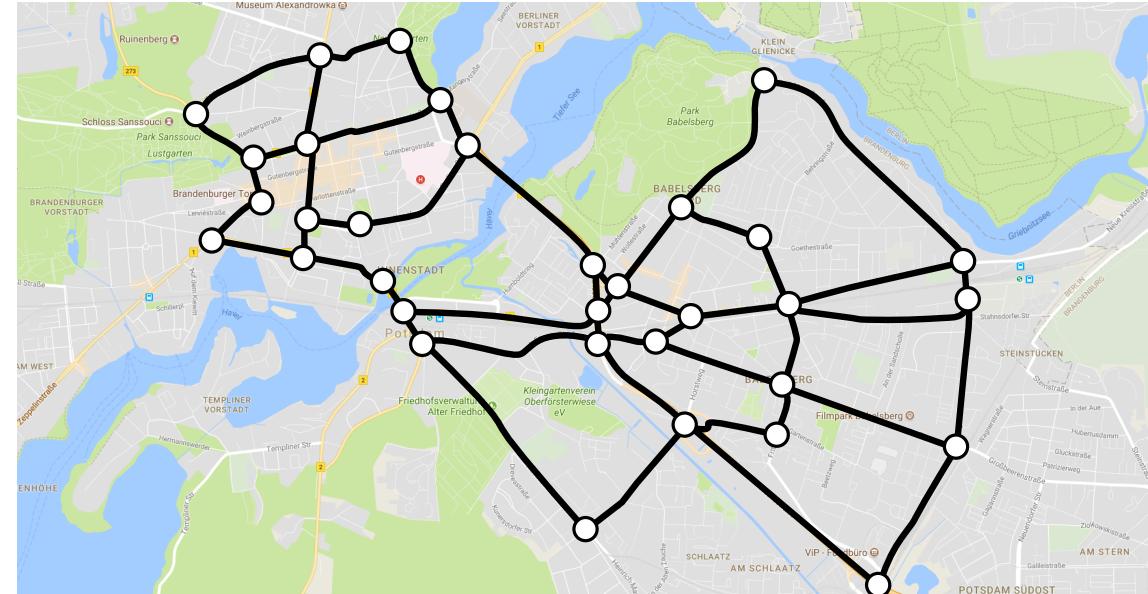
- Example: road networks



Temporal Graphs—Motivation

Static Graphs

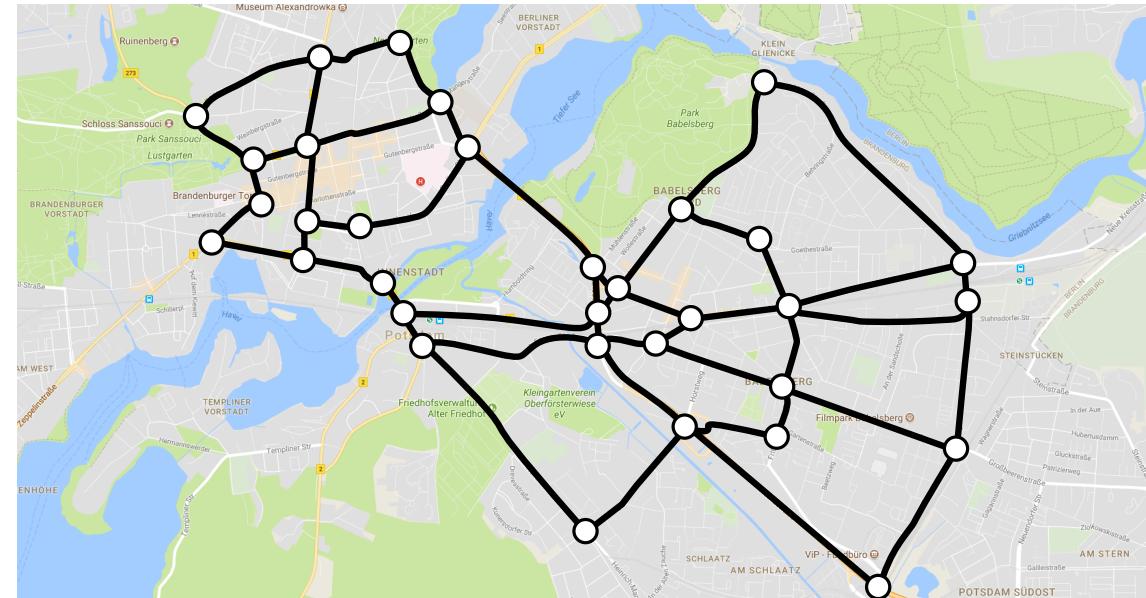
- Example: road networks
- Full algorithmic and graph-theoretic toolkit
- Common problems:
 - Shortest paths
 - Spanning trees
 - Matchings



Temporal Graphs—Motivation

Static Graphs

- Example: road networks
- Full algorithmic and graph-theoretic toolkit
- Common problems:
 - Shortest paths
 - Spanning trees
 - Matchings



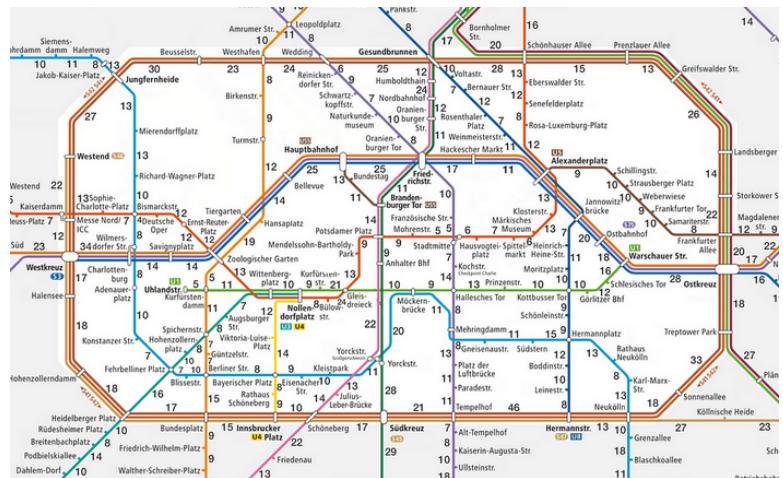
Easy!

Temporal Graphs—Motivation

Social network graph

Dynamic Graphs

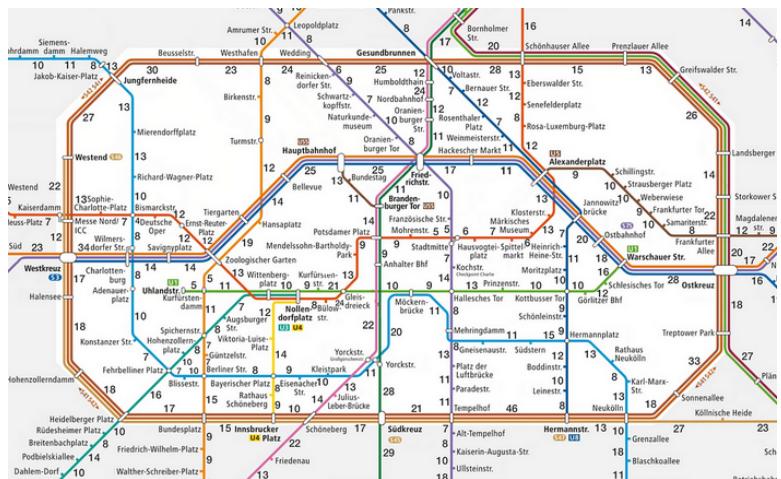
- Example: friendship graphs, public transport



S-Bahn network of Berlin

Temporal Graphs—Motivation

Social network graph



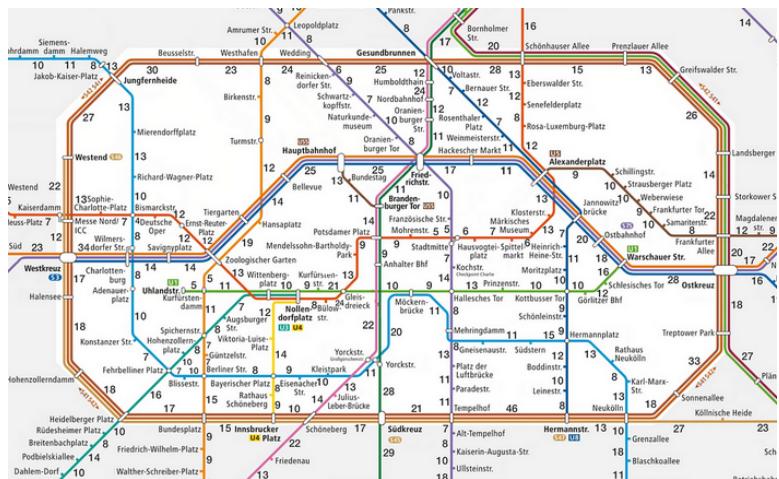
S-Bahn network of Berlin

Dynamic Graphs

- Example: friendship graphs, public transport
- Multiple settings based on updates
 - Node or edge updates
 - Online or offline

Temporal Graphs—Motivation

Social network graph



S-Bahn network of Berlin

Dynamic Graphs

- Example: friendship graphs, public transport
- Multiple settings based on updates
 - Node or edge updates
 - Online or offline
- **Temporal Graphs:** edges available at given timestamps
 - Timestamps known in advance

Static vs Temporal Graphs

Classical Problem

Temporal challenges

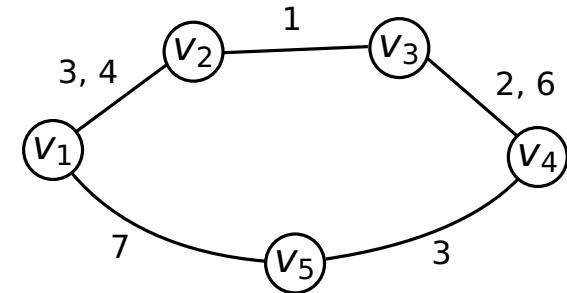
Static vs Temporal Graphs

Classical Problem

Shortest Paths

Temporal challenges

Connectivity is not transitive!
⇒ Can be NP-hard



There are paths $v_1 \rightsquigarrow v_2$ and $v_2 \rightsquigarrow v_3$, but **not** $v_1 \rightsquigarrow v_3$

Static vs Temporal Graphs

Classical Problem

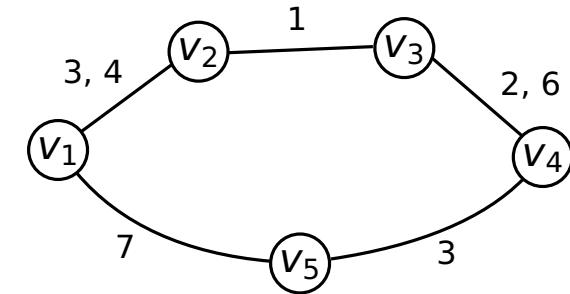
Shortest Paths

Matchings

Temporal challenges

Connectivity is not transitive!
 ⇒ Can be NP-hard

Menger's theorem does not hold
 ⇒ Can be NP-hard



There are paths $v_1 \rightsquigarrow v_2$ and $v_2 \rightsquigarrow v_3$, but **not** $v_1 \rightsquigarrow v_3$

Static vs Temporal Graphs

Classical Problem

Shortest Paths

Matchings

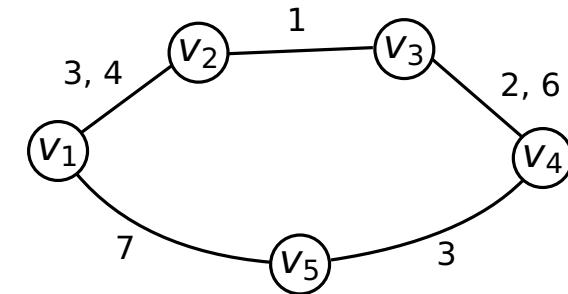
Minimum spanner

Temporal challenges

Connectivity is not transitive!
 ⇒ Can be NP-hard

Menger's theorem does not hold
 ⇒ Can be NP-hard

Minimum spanners usually not trees
 ⇒ Even quadratic size sometimes!



There are paths $v_1 \rightsquigarrow v_2$ and $v_2 \rightsquigarrow v_3$, but **not** $v_1 \rightsquigarrow v_3$

Spanners in Temporal Graphs

Minimum size **edge set** that yields
all pairs connectivity

Spanners in Temporal Graphs

Minimum size **edge set** that yields
all pairs connectivity

- Only consider temporally connected graphs

Spanners in Temporal Graphs

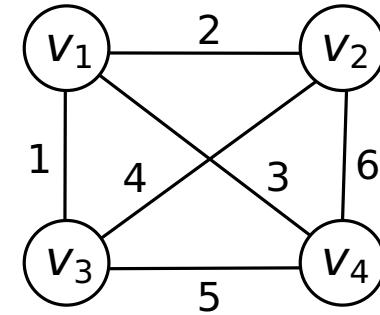
Minimum size **edge set** that yields
all pairs connectivity

- Only consider temporally connected graphs
- For arbitrary graphs: $\Theta(n^2)$ edges needed (Axiotis et al., ICALP'16)

Spanners in Temporal Graphs

Minimum size **edge set** that yields
all pairs connectivity

- Only consider temporally connected graphs
- For arbitrary graphs: $\Theta(n^2)$ edges needed (Axiotis et al., ICALP'16)
- Does not hold for temporal cliques



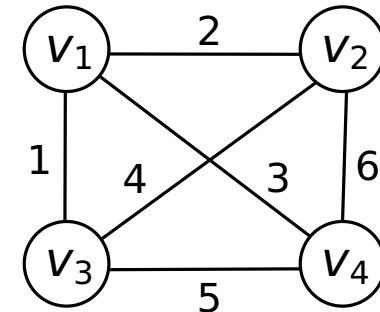
Temporal Cliques

- Underlying graph is a clique
- Each edge has exactly one unique timestamp

Spanners in Temporal Graphs

Minimum size **edge set** that yields
all pairs connectivity

- Only consider temporally connected graphs
- For arbitrary graphs: $\Theta(n^2)$ edges needed (Axiotis et al., ICALP'16)
- Does not hold for temporal cliques
 - $\mathcal{O}(n \log(n))$ upper bound (Casteigts et al., ICALP '19)
 - No clique known with minimum spanners greater than $2n - 3$



Temporal Cliques

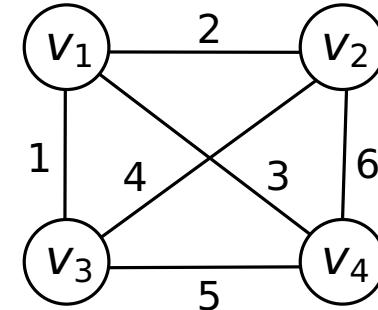
- Underlying graph is a clique
- Each edge has exactly one unique timestamp

Spanners in Temporal Graphs

Minimum size **edge set** that yields
all pairs connectivity

- Only consider temporally connected graphs
- For arbitrary graphs: $\Theta(n^2)$ edges needed (Axiotis et al., ICALP'16)
- Does not hold for temporal cliques
 - $\mathcal{O}(n \log(n))$ upper bound (Casteigts et al., ICALP '19)
 - No clique known with minimum spanners greater than $2n - 3$

Task: find $\Theta(n)$ sized spanners for temporal cliques!



Temporal Cliques

- Underlying graph is a clique
- Each edge has exactly one unique timestamp

Spanners in Temporal Cliques

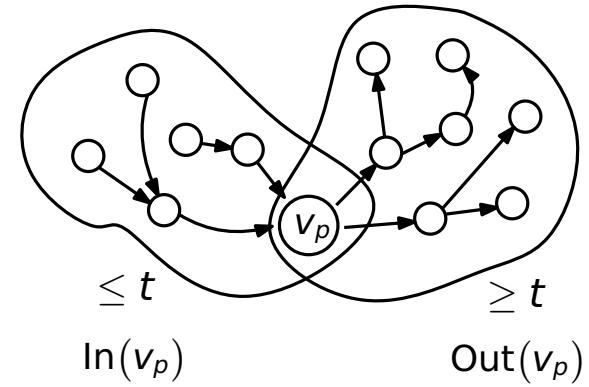
- All pairs connectivity in temporal cliques

Spanners in Temporal Cliques

- All pairs connectivity in temporal cliques
(Casteigts et al., FOCS '22)
- Temporal cliques permit a $O(n)$ spanner a.a.s.
 - Timelabels assigned randomly

Spanners in Temporal Cliques

- All pairs connectivity in temporal cliques
(Casteigts et al., FOCS '22)
- Temporal cliques permit a $O(n)$ spanner a.a.s.
 - Timelabels assigned randomly
 - Because pivot-vertices exist a.a.s.



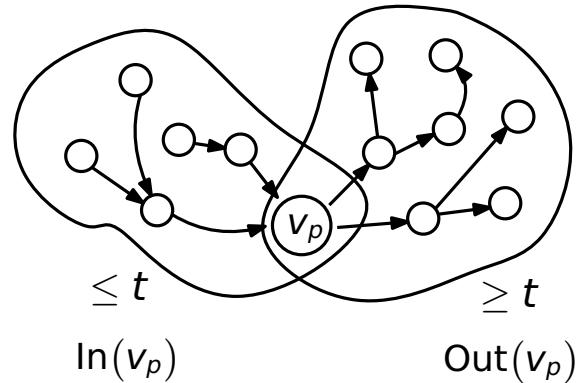
- Construction for optimal spanners
- Structure exists a.a.s.

Spanners in Temporal Cliques

- All pairs connectivity in temporal cliques
(Casteigts et al., FOCS '22)
- Temporal cliques permit a $O(n)$ spanner a.a.s.
 - Timelabels assigned randomly
 - Because pivot-vertices exist a.a.s.

How about all temporal cliques?

- Cliques without pivot-vertices exist



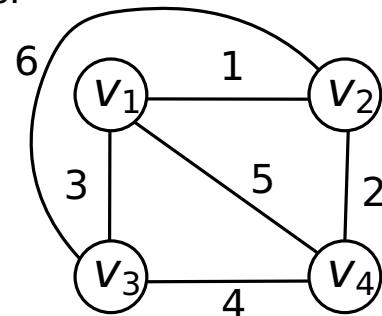
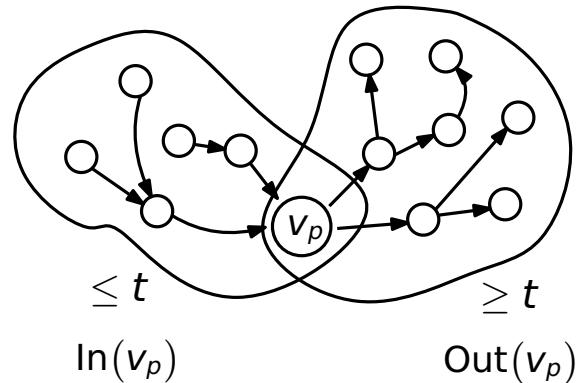
- Construction for optimal spanners
- Structure exists a.a.s.

Spanners in Temporal Cliques

- All pairs connectivity in temporal cliques
(Casteigts et al., FOCS '22)
- Temporal cliques permit a $O(n)$ spanner a.a.s.
 - Timelabels assigned randomly
 - Because pivot-vertices exist a.a.s.

How about all temporal cliques?

- Cliques without pivot-vertices exist



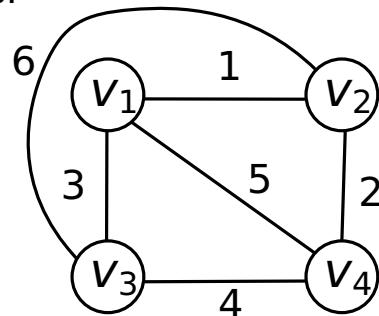
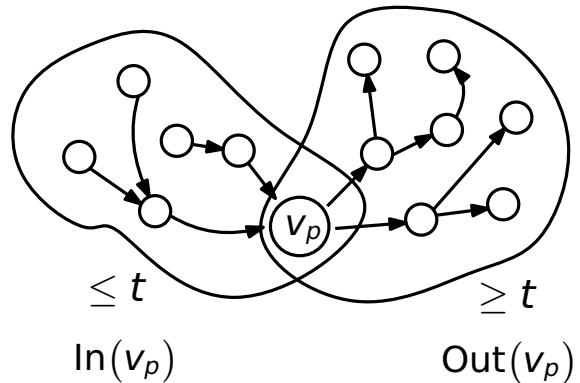
- Construction for optimal spanners
- Structure exists a.a.s.

Spanners in Temporal Cliques

- All pairs connectivity in temporal cliques
(Casteigts et al., FOCS '22)
- Temporal cliques permit a $O(n)$ spanner a.a.s.
 - Timelabels assigned randomly
 - Because pivot-vertices exist a.a.s.

How about all temporal cliques?

- Cliques without pivot-vertices exist

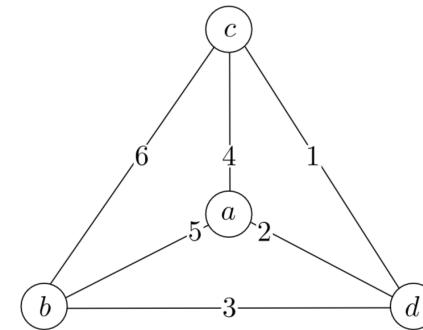


- Construction for optimal spanners
- Structure exists a.a.s.

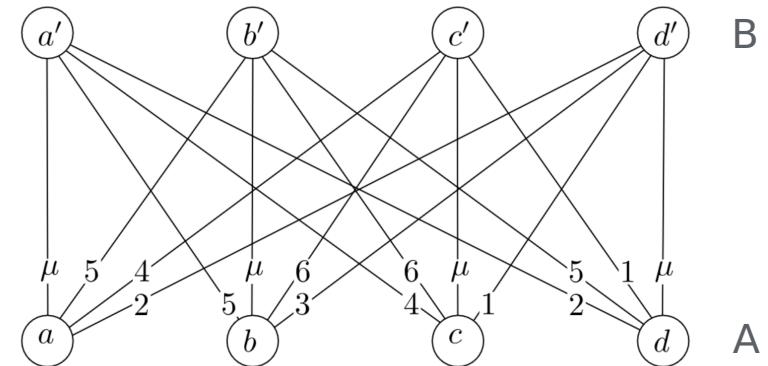
Task: find $\Theta(n)$ sized spanners for **all** temporal cliques!

Temporal Bicliques

- Bicliques are better to work with
- Temporal graph $G = (A \sqcup B, \lambda)$, A to B connectivity



A temporal clique



The corresponding temporal biclique

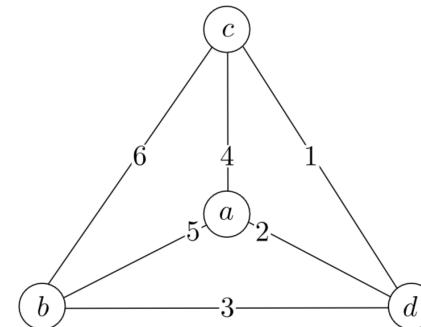
Temporal Bicliques

- Bicliques are better to work with
- Temporal graph $G = (A \sqcup B, \lambda)$, A to B connectivity

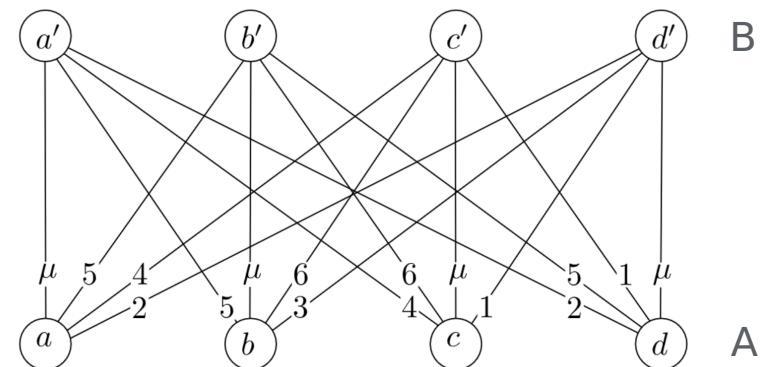
We've proven:

Theorem.

Minimal spanners for bicliques and cliques
 differ by constant factor



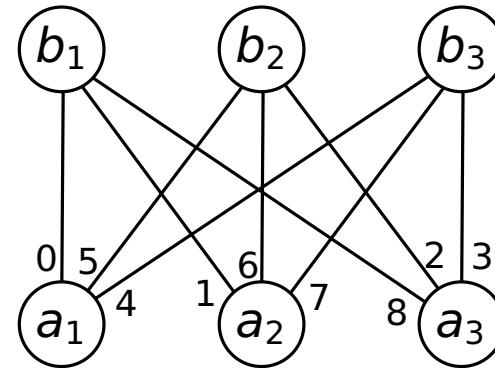
A temporal clique



The corresponding temporal biclique

(Extremal) Matchings

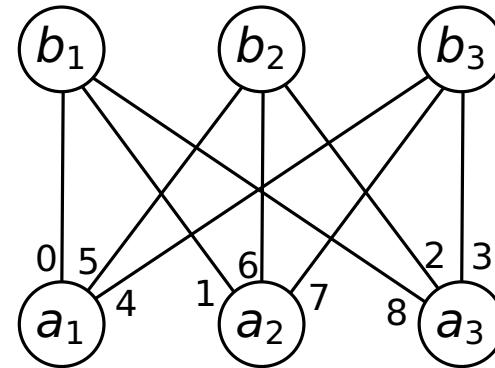
- Temporal graph $G = (A \sqcup B, \lambda)$, A to B connectivity
- Any structural properties so far?



(Extremal) Matchings

- Temporal graph $G = (A \sqcup B, \lambda)$, A to B connectivity
- Any structural properties so far?

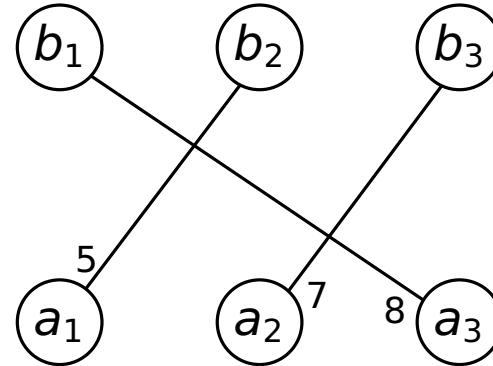
First and last edges form a complete matching



(Extremal) Matchings

- Temporal graph $G = (A \sqcup B, \lambda)$, A to B connectivity
- Any structural properties so far?

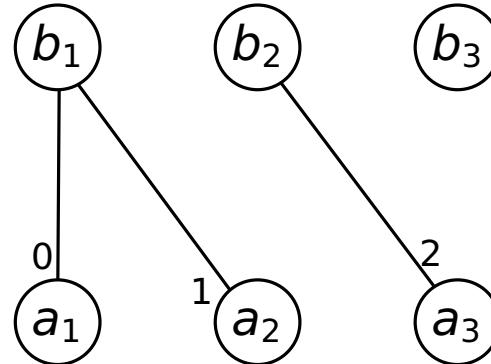
First and last edges form a complete matching



(Extremal) Matchings

- Temporal graph $G = (A \sqcup B, \lambda)$, A to B connectivity
- Any structural properties so far?

First and last edges form a complete matching

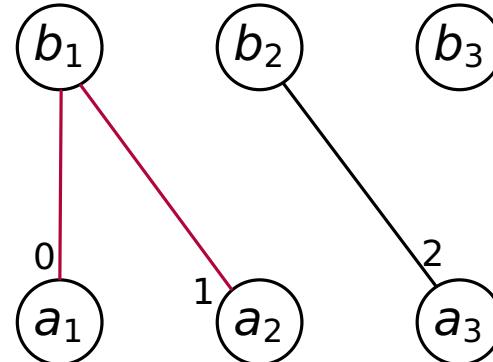


(Extremal) Matchings

- Temporal graph $G = (A \sqcup B, \lambda)$, A to B connectivity
- Any structural properties so far?

First and last edges form a complete matching

- Vertex is dismountable if it can delegate its reachability
 - Add path to proxy, delete vertex

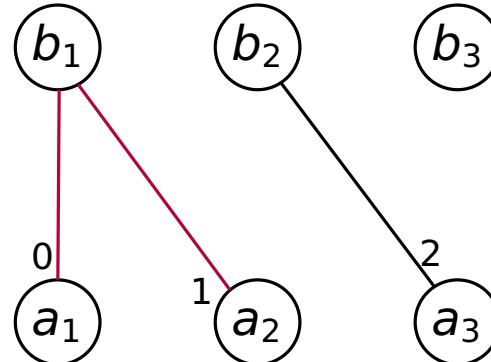


(Extremal) Matchings

- Temporal graph $G = (A \sqcup B, \lambda)$, A to B connectivity
- Any structural properties so far?

First and last edges form a complete matching

- Vertex is dismountable if it can delegate its reachability
 - Add path to proxy, delete vertex
- $\pi^- : A \sqcup B \rightarrow B \sqcup A$ is earliest (local) neighbor
- $\pi^+ : A \sqcup B \rightarrow B \sqcup A$ is latest (local) neighbor

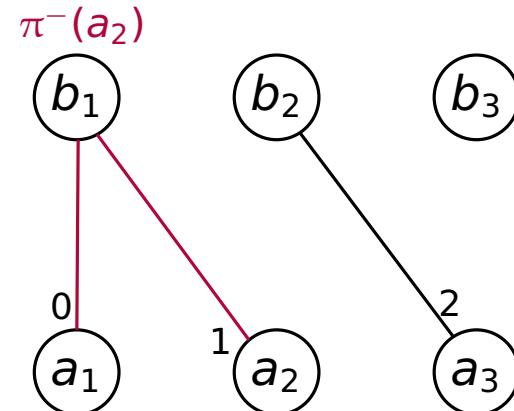


(Extremal) Matchings

- Temporal graph $G = (A \sqcup B, \lambda)$, A to B connectivity
- Any structural properties so far?

First and last edges form a complete matching

- Vertex is dismountable if it can delegate its reachability
 - Add path to proxy, delete vertex
- $\pi^- : A \sqcup B \rightarrow B \sqcup A$ is earliest (local) neighbor
- $\pi^+ : A \sqcup B \rightarrow B \sqcup A$ is latest (local) neighbor



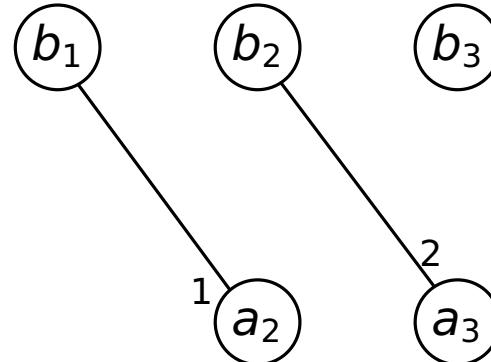
Example of a
dismountable vertex

(Extremal) Matchings

- Temporal graph $G = (A \sqcup B, \lambda)$, A to B connectivity
- Any structural properties so far?

First and last edges form a complete matching

- Vertex is dismountable if it can delegate its reachability
 - Add path to proxy, delete vertex
- $\pi^- : A \sqcup B \rightarrow B \sqcup A$ is earliest (local) neighbor
- $\pi^+ : A \sqcup B \rightarrow B \sqcup A$ is latest (local) neighbor

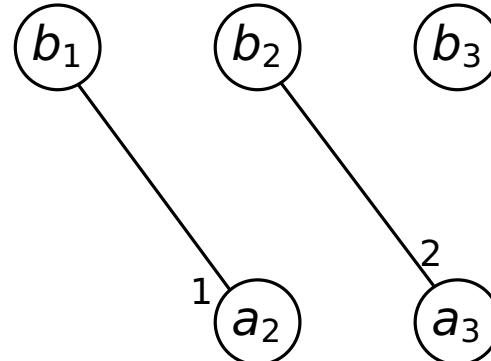


(Extremal) Matchings

- Temporal graph $G = (A \sqcup B, \lambda)$, A to B connectivity
- Any structural properties so far?

First and last edges form a complete matching

- Vertex is dismountable if it can delegate its reachability
 - Add path to proxy, delete vertex
- $\pi^- : A \sqcup B \rightarrow B \sqcup A$ is earliest (local) neighbor
- $\pi^+ : A \sqcup B \rightarrow B \sqcup A$ is latest (local) neighbor
- Analogously holds for vertices in B with π^+



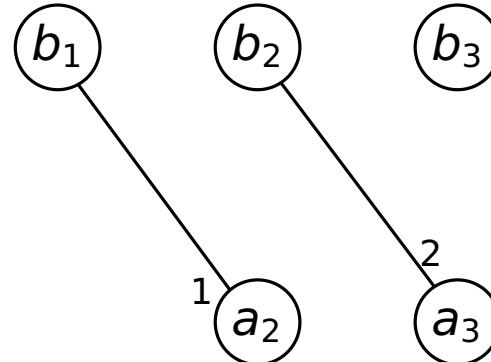
(Extremal) Matchings

- Temporal graph $G = (A \sqcup B, \lambda)$, A to B connectivity
- Any structural properties so far?

First and last edges form a complete matching

- Vertex is dismountable if it can delegate its reachability
 - Add path to proxy, delete vertex
- $\pi^- : A \sqcup B \rightarrow B \sqcup A$ is earliest (local) neighbor
- $\pi^+ : A \sqcup B \rightarrow B \sqcup A$ is latest (local) neighbor
- Analogously holds for vertices in B with π^+

Theorem. Dismount until we have a matching!



(Extremal) Matchings

- First and last local edges form a matching!
- Take first and last edges into spanner
- Switch roles of A and B
- Assume $|A| = |B|$

(Extremal) Matchings

- First and last local edges form a matching!
- Take first and last edges into spanner
- Switch roles of A and B
- Assume $|A| = |B|$

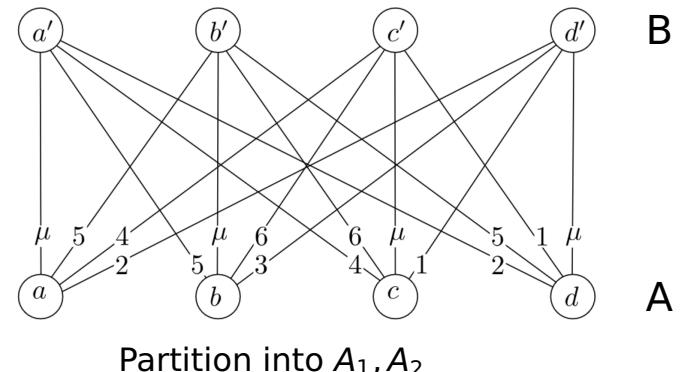
Utilize with divide and conquer!

```

def biSpanner( $D = (A, B, \lambda)$ ):
  if  $|A| = 1$  then return  $E(D)$ 
  partition  $A$  into non-empty  $A_1, A_2$  with  $|A_1| = \lfloor |A|/2 \rfloor$ 
   $D_1 \leftarrow D[A_1 \sqcup B], D_2 \leftarrow D[A_2 \sqcup B]$ 
   $(D_1^*, S_1^*) \leftarrow \text{dismount}(D_1), (D_2^*, S_2^*) \leftarrow \text{dismount}(D_2)$ 
  return biSpanner( $D_1^*$ )  $\cup$  biSpanner( $D_2^*$ )  $\cup S_1^* \cup S_2^*$ 

```

Algorithm for $O(n \log n)$ spanner



(Extremal) Matchings

- First and last local edges form a matching!
- Take first and last edges into spanner
- Switch roles of A and B
- Assume $|A| = |B|$

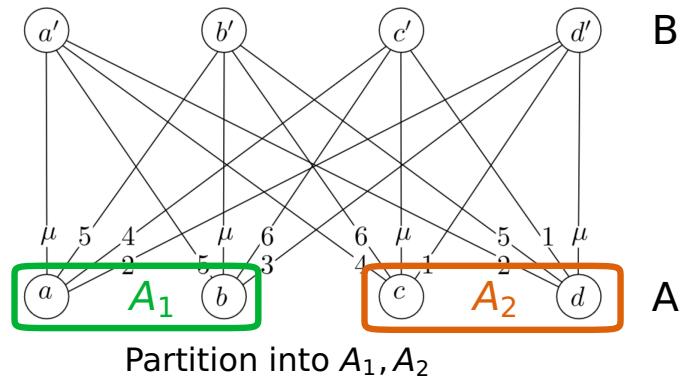
Utilize with divide and conquer!

```

def biSpanner( $D = (A, B, \lambda)$ ):
  if  $|A| = 1$  then return  $E(D)$ 
→ partition  $A$  into non-empty  $A_1$   $A_2$  with  $|A_1| = \lfloor |A|/2 \rfloor$ 
 $D_1 \leftarrow D[A_1 \sqcup B]$ ,  $D_2 \leftarrow D[A_2 \sqcup B]$ 
 $(D_1^*, S_1^*) \leftarrow$  dismount( $D_1$ ),  $(D_2^*, S_2^*) \leftarrow$  dismount( $D_2$ )
return biSpanner( $D_1^*$ )  $\cup$  biSpanner( $D_2^*$ )  $\cup S_1^* \cup S_2^*$ 

```

Algorithm for $O(n \log n)$ spanner



(Extremal) Matchings

- First and last local edges form a matching!
- Take first and last edges into spanner
- Switch roles of A and B
- Assume $|A| = |B|$

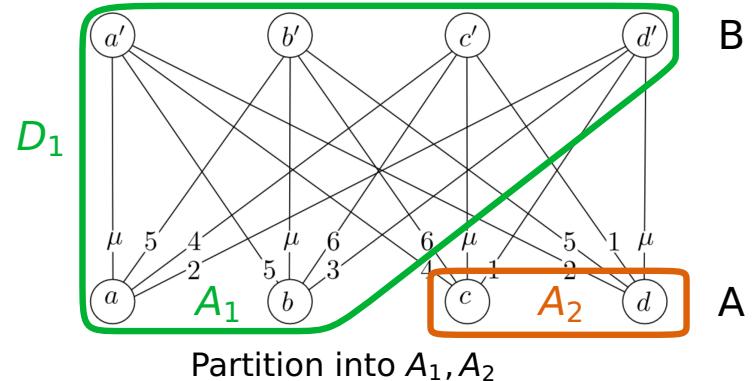
Utilize with divide and conquer!

```

def biSpanner(D = (A, B, λ)):
    if |A| = 1 then return E(D)
    partition A into non-empty  $A_1, A_2$  with  $|A_1| = |A|/2$ 
    →  $D_1 \leftarrow D[A_1 \sqcup B], D_2 \leftarrow D[A_2 \sqcup B]$ 
     $(D_1^*, S_1^*) \leftarrow \text{dismount}(D_1), (D_2^*, S_2^*) \leftarrow \text{dismount}(D_2)$ 
    return biSpanner( $D_1^*$ )  $\cup$  biSpanner( $D_2^*$ )  $\cup S_1^* \cup S_2^*$ 

```

Algorithm for $O(n \log n)$ spanner



(Extremal) Matchings

- First and last local edges form a matching!
- Take first and last edges into spanner
- Switch roles of A and B
- Assume $|A| = |B|$

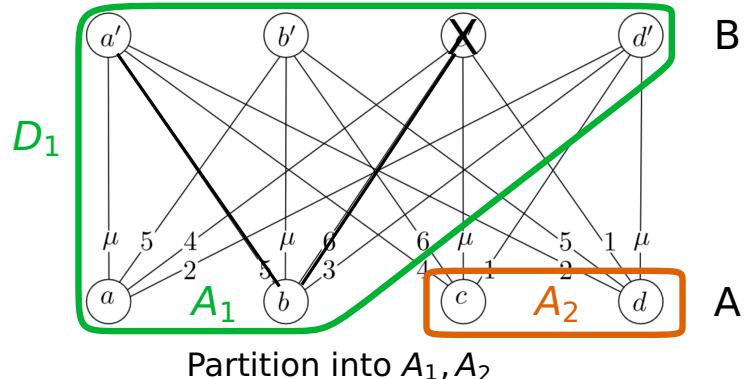
Utilize with divide and conquer!

```

def biSpanner(D = (A, B, λ)):
    if |A| = 1 then return E(D)
    partition A into non-empty  $A_1$ ,  $A_2$  with  $|A_1| = |A|/2$ 
     $D_1 \leftarrow D[A_1 \sqcup B]$ ,  $D_2 \leftarrow D[A_2 \sqcup B]$ 
    →  $(D_1^*, S_1^*) \leftarrow \text{dismount}(D_1)$ ,  $(D_2^*, S_2^*) \leftarrow \text{dismount}(D_2)$ 
    return biSpanner( $D_1^*$ )  $\cup$  biSpanner( $D_2^*$ )  $\cup$   $S_1^* \cup S_2^*$ 

```

Algorithm for $O(n \log n)$ spanner



(Extremal) Matchings

- First and last local edges form a matching!
- Take first and last edges into spanner
- Switch roles of A and B
- Assume $|A| = |B|$

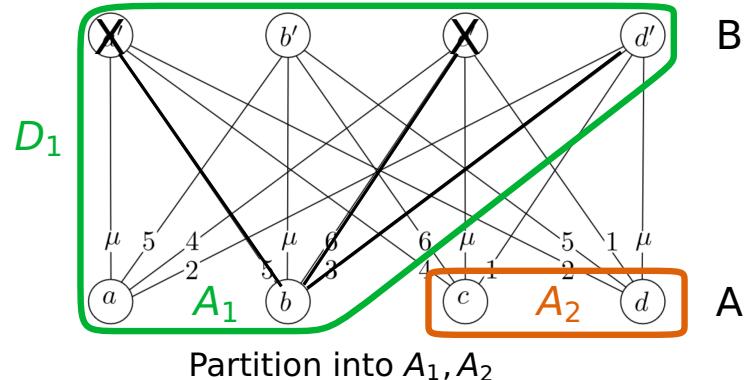
Utilize with divide and conquer!

```

def biSpanner(D = (A, B, λ)):
    if |A| = 1 then return E(D)
    partition A into non-empty  $A_1, A_2$  with  $|A_1| = |A|/2$ 
     $D_1 \leftarrow D[A_1 \sqcup B], D_2 \leftarrow D[A_2 \sqcup B]$ 
    →  $(D_1^*, S_1^*) \leftarrow \text{dismount}(D_1), (D_2^*, S_2^*) \leftarrow \text{dismount}(D_2)$ 
    return biSpanner( $D_1^*$ )  $\cup$  biSpanner( $D_2^*$ )  $\cup S_1^* \cup S_2^*$ 

```

Algorithm for $O(n \log n)$ spanner



(Extremal) Matchings

- First and last local edges form a matching!
- Take first and last edges into spanner
- Switch roles of A and B
- Assume $|A| = |B|$

Utilize with divide and conquer!

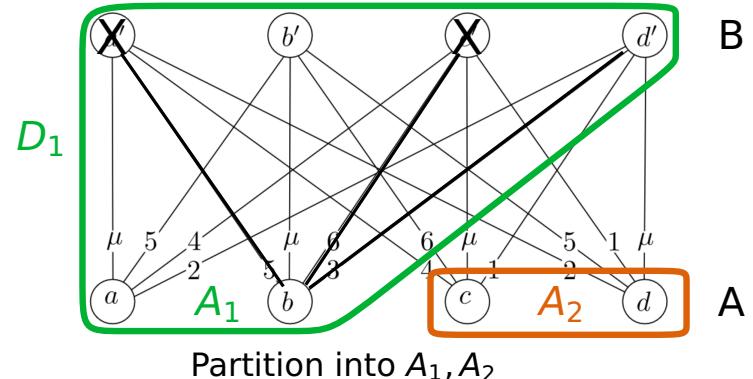
- $S_1^*, S_2^* \in \Theta(n)$
- Results in $O(n \log n)$ spanner

```

def biSpanner( $D = (A, B, \lambda)$ ):
    if  $|A| = 1$  then return  $E(D)$ 
    partition  $A$  into non-empty  $A_1$   $\boxed{A_2}$  with  $|A_1| = \lfloor |A|/2 \rfloor$ 
     $D_1 \leftarrow D[A_1 \sqcup B], D_2 \leftarrow D[A_2 \sqcup B]$ 
     $(D_1^*, S_1^*) \leftarrow \text{dismount}(D_1), (D_2^*, S_2^*) \leftarrow \text{dismount}(D_2)$ 
     $\rightarrow$  return  $\text{biSpanner}(D_1^*) \cup \text{biSpanner}(D_2^*) \cup S_1^* \cup S_2^*$ 

```

Algorithm for $O(n \log n)$ spanner

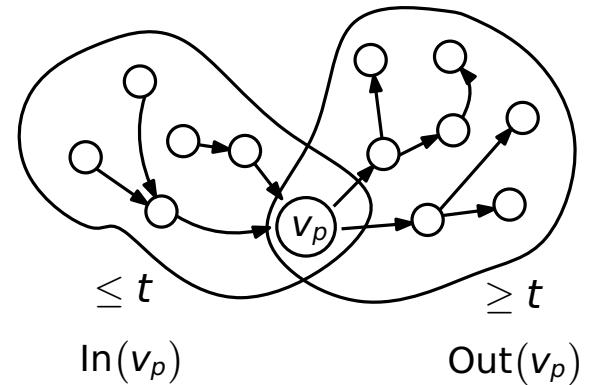


Partial Pivot Edges

- Previously: pivot vertices
 - Existence not guaranteed

Partial Pivot Edges

- Previously: pivot vertices
 - Existence not guaranteed

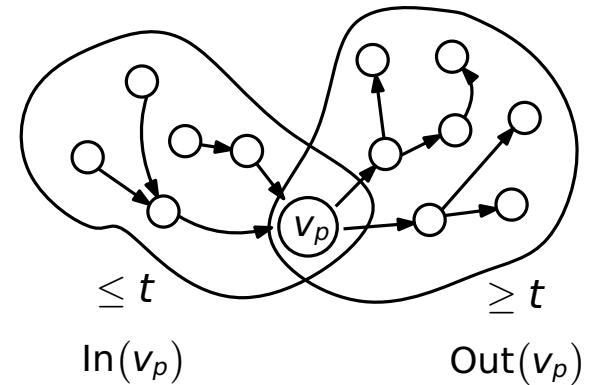
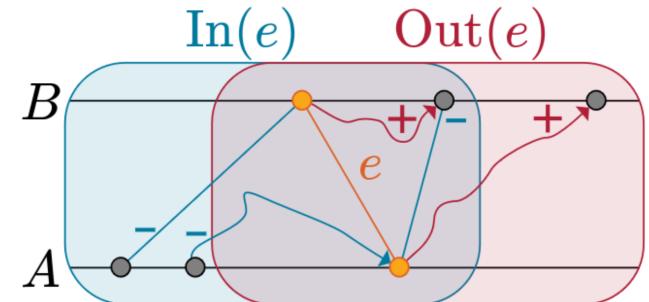


Partial Pivot Edges

- Previously: pivot vertices
 - Existence not guaranteed

Partial Pivot Edges

- Generalization of pivot vertices
- Vertices can reach or be reached by edge e
- Linear overlap suffices

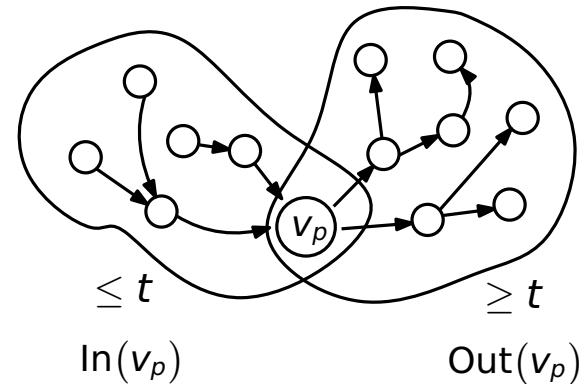
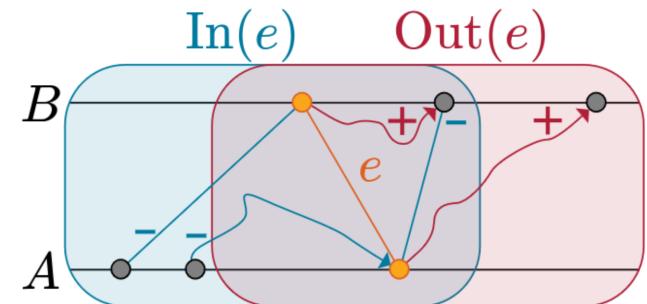


Partial Pivot Edges

- Previously: pivot vertices
 - Existence not guaranteed

Partial Pivot Edges

- Generalization of pivot vertices
- Vertices can reach or be reached by edge e
- Linear overlap suffices
- $\text{In}(e), \text{Out}(e)$: reachable vertices, via tree
 - Connect $\text{In}(e)$ to $\text{Out}(e)$ with $\mathcal{O}(|\text{In}(e)| + |\text{Out}(e)|)$ edges



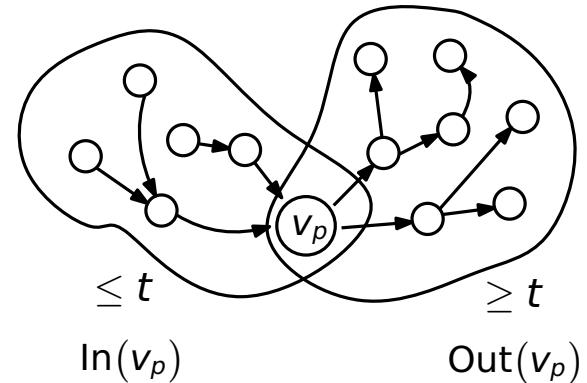
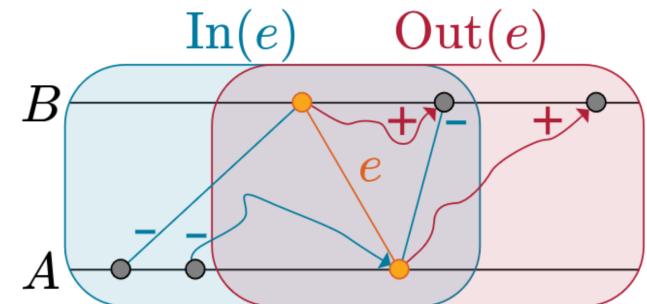
Partial Pivot Edges

- Previously: pivot vertices
 - Existence not guaranteed

Partial Pivot Edges

- Generalization of pivot vertices
- Vertices can reach or be reached by edge e
- Linear overlap suffices
- $\text{In}(e), \text{Out}(e)$: reachable vertices, via tree
 - Connect $\text{In}(e)$ to $\text{Out}(e)$ with $\mathcal{O}(|\text{In}(e)| + |\text{Out}(e)|)$ edges

$\text{In}(e) \cap \text{Out}(e) \in \Omega(n) \Rightarrow$ reduce!



Partial Pivot Edges

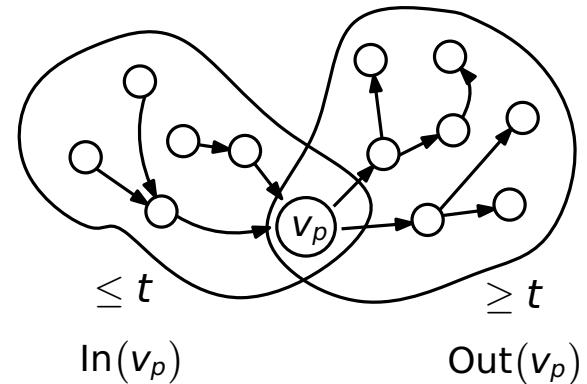
- Previously: pivot vertices
 - Existence not guaranteed

Partial Pivot Edges

- Generalization of pivot vertices
- Vertices can reach or be reached by edge e
- Linear overlap suffices
- $\text{In}(e), \text{Out}(e)$: reachable vertices, via tree
 - Connect $\text{In}(e)$ to $\text{Out}(e)$ with $\mathcal{O}(|\text{In}(e)| + |\text{Out}(e)|)$ edges

$\text{In}(e) \cap \text{Out}(e) \in \Omega(n) \Rightarrow$ reduce!

Is there a graph that has no pivot edges?



Partial Pivot Edges

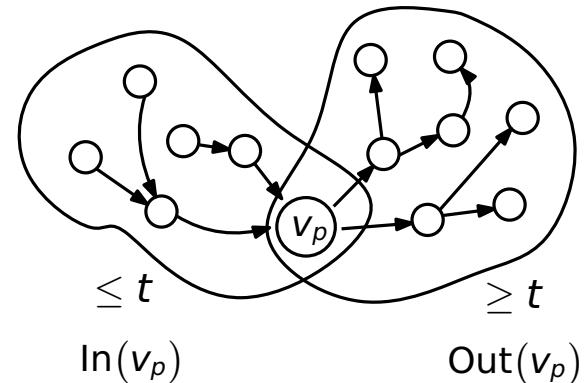
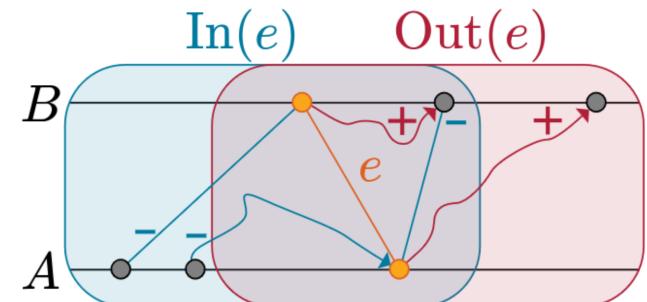
- Previously: pivot vertices
 - Existence not guaranteed

Partial Pivot Edges

- Generalization of pivot vertices
- Vertices can reach or be reached by edge e
- Linear overlap suffices
- $\text{In}(e), \text{Out}(e)$: reachable vertices, via tree
 - Connect $\text{In}(e)$ to $\text{Out}(e)$ with $\mathcal{O}(|\text{In}(e)| + |\text{Out}(e)|)$ edges

$\text{In}(e) \cap \text{Out}(e) \in \Omega(n) \Rightarrow$ reduce!

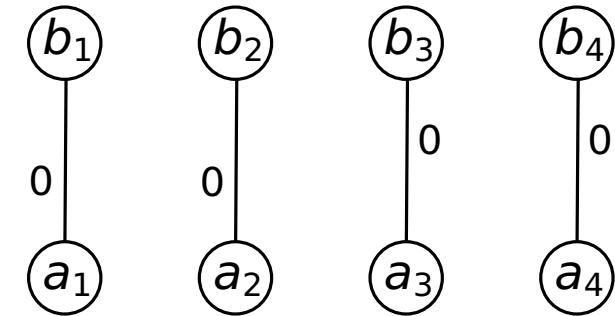
Is there a graph that has no pivot edges? **Yes**



Shifted Matchings and Reverted Edges

Shifted Matching Graph

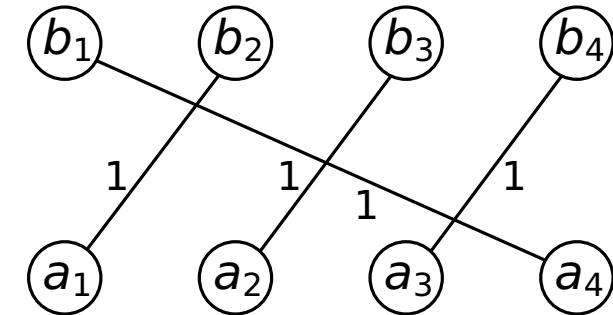
- Label $\lambda(\{a_i, b_j\}) := j - i \bmod n$
- Edges of each timestamp form a matching



Shifted Matchings and Reverted Edges

Shifted Matching Graph

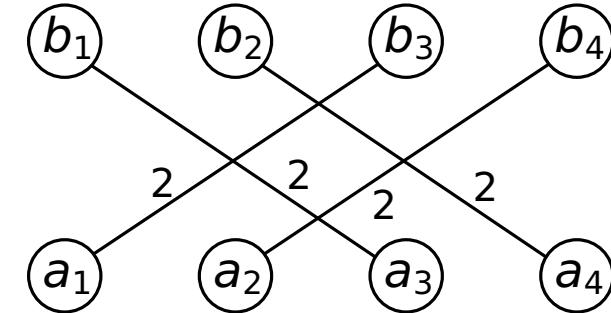
- Label $\lambda(\{a_i, b_j\}) := j - i \bmod n$
- Edges of each timestamp form a matching



Shifted Matchings and Reverted Edges

Shifted Matching Graph

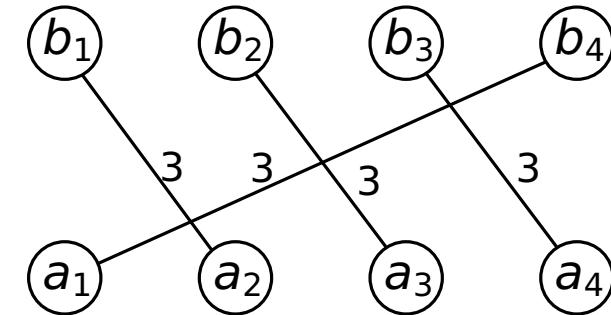
- Label $\lambda(\{a_i, b_j\}) := j - i \bmod n$
- Edges of each timestamp form a matching



Shifted Matchings and Reverted Edges

Shifted Matching Graph

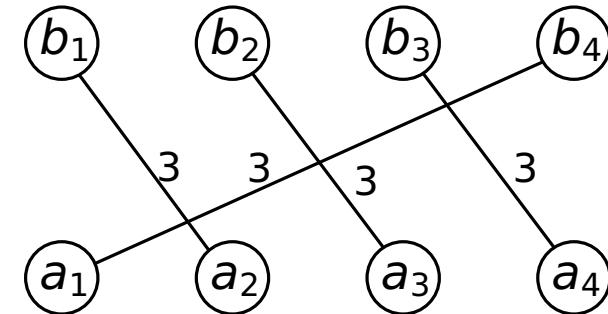
- Label $\lambda(\{a_i, b_j\}) := j - i \bmod n$
- Edges of each timestamp form a matching



Shifted Matchings and Reverted Edges

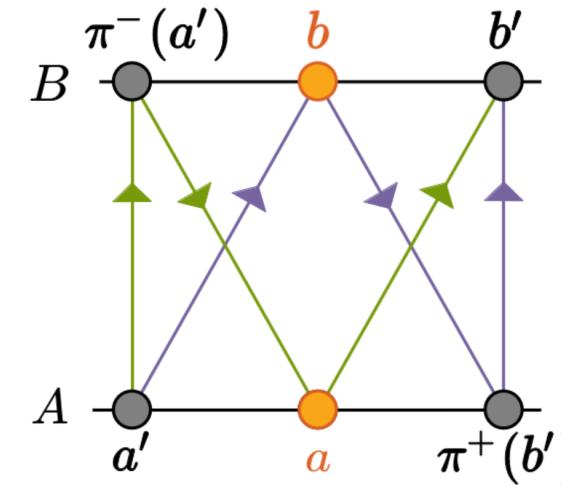
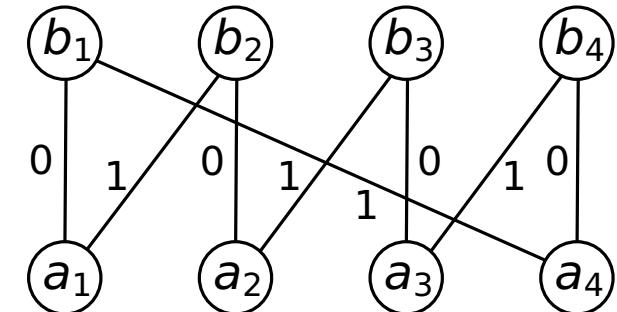
Shifted Matching Graph

- Label $\lambda(\{a_i, b_j\}) := j - i \bmod n$
- Edges of each timestamp form a matching
- $\text{In}(\{a_i, b_j\}) \cap \text{Out}(\{a_i, b_j\}) = \{a_i, b_j\}$
 - All nodes can be reached **either** before an edge or after an edge



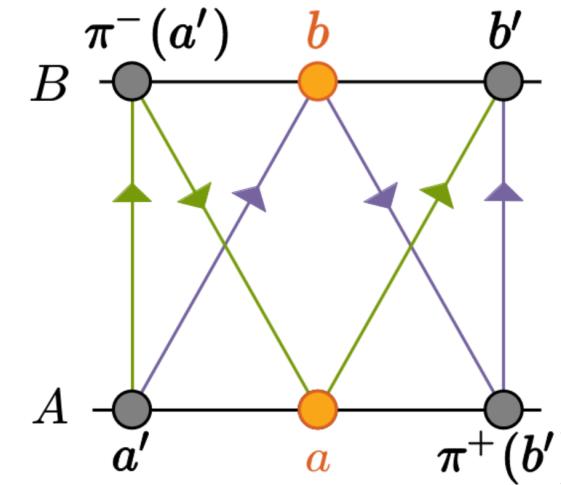
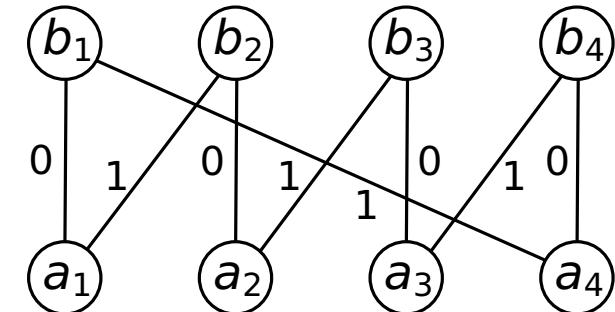
Shifted Matchings and Reverted Edges

- For a fixed edge $e = \{a, b\}$, an edge $\{a', b'\}$ is **reverted** if the **green** or **purple** path is temporal



Shifted Matchings and Reverted Edges

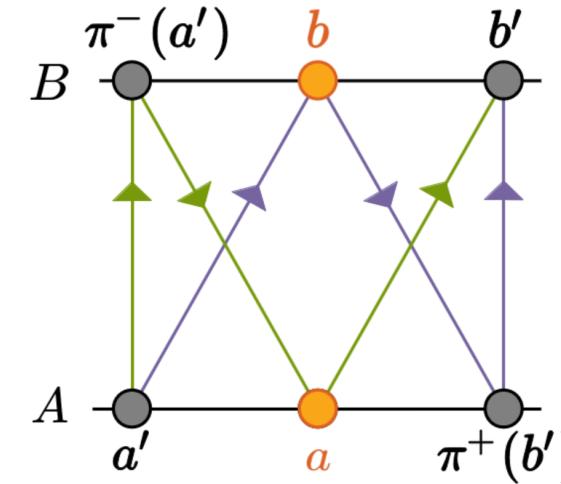
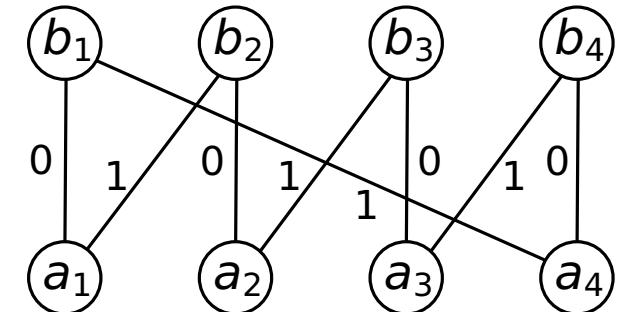
- For a fixed edge $e = \{a, b\}$, an edge $\{a', b'\}$ is **reverted** if the **green** or **purple** path is temporal
- We get a spanner of size $4n - 4 + |\text{NotRev}_e|$



Shifted Matchings and Reverted Edges

- For a fixed edge $e = \{a, b\}$, an edge $\{a', b'\}$ is **reverted** if the **green** or **purple** path is temporal
- We get a spanner of size $4n - 4 + |\text{NotRev}_e|$

$\text{NotRev}_e \in \mathcal{O}(n) \Rightarrow \text{Solved!}$

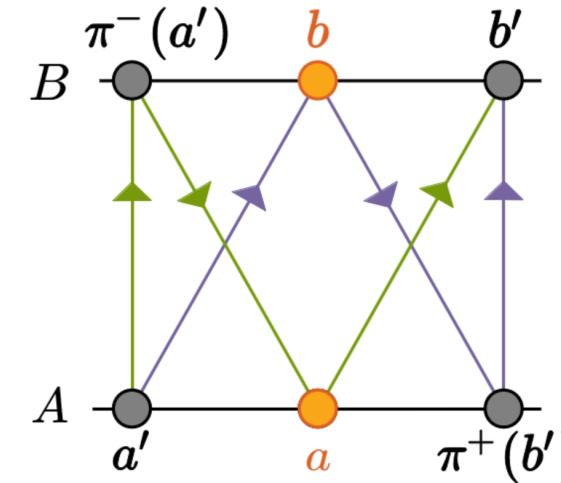
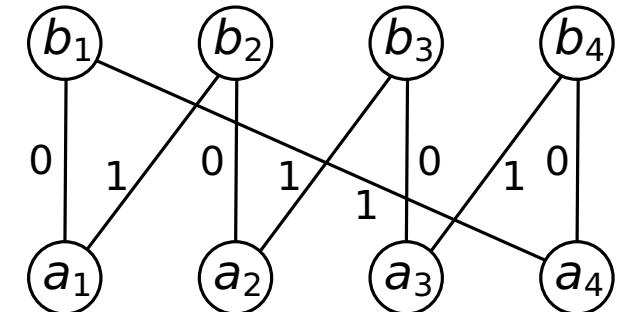


Shifted Matchings and Reverted Edges

- For a fixed edge $e = \{a, b\}$, an edge $\{a', b'\}$ is **reverted** if the **green** or **purple** path is temporal
- We get a spanner of size $4n - 4 + |\text{NotRev}_e|$

$\text{NotRev}_e \in \mathcal{O}(n) \Rightarrow \text{Solved!}$

- Edges with small $|\text{NotRev}_e|$ either early or late

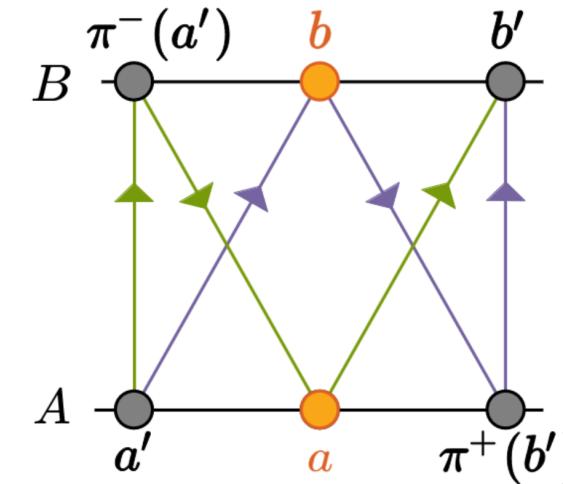
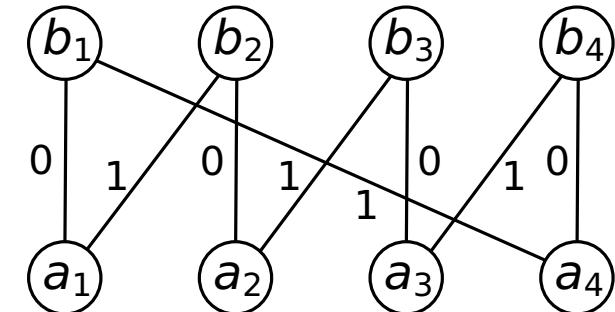


Shifted Matchings and Reverted Edges

- For a fixed edge $e = \{a, b\}$, an edge $\{a', b'\}$ is **reverted** if the **green** or **purple** path is temporal
- We get a spanner of size $4n - 4 + |\text{NotRev}_e|$

$\text{NotRev}_e \in \mathcal{O}(n) \Rightarrow \text{Solved!}$

- Edges with small $|\text{NotRev}_e|$ either early or late
 - That's complimentary to pivot edges!



Shifted Matchings and Reverted Edges

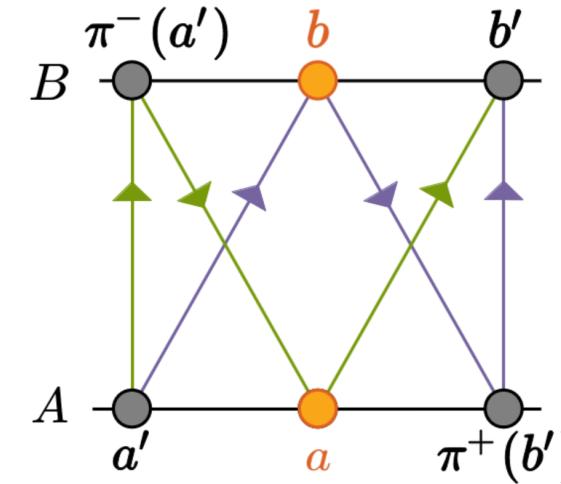
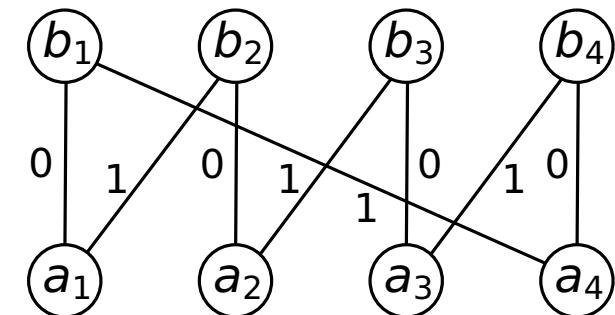
- For a fixed edge $e = \{a, b\}$, an edge $\{a', b'\}$ is **reverted** if the **green** or **purple** path is temporal
- We get a spanner of size $4n - 4 + |\text{NotRev}_e|$

$\text{NotRev}_e \in \mathcal{O}(n) \Rightarrow \text{Solved!}$

- Edges with small $|\text{NotRev}_e|$ either early or late
 - That's complimentary to pivot edges!

Shifted Matching graph (*SM*)

- 0 or $n - 1$ labelled edges have $\text{NotRev}_e = \emptyset$



Composed Graphs and Spanners

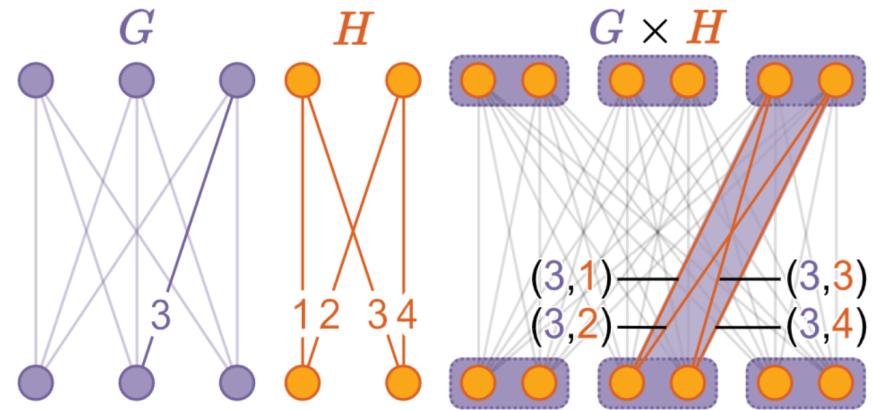
- Linear size pivot sets or many reverted edges imply linear spanners
- Unsolved: $\log(n)$ or \sqrt{n} pivot edges

Composed Graphs and Spanners

- Linear size pivot sets or many reverted edges imply linear spanners
- Unsolved: $\log(n)$ or \sqrt{n} pivot edges

Product graphs

- Tensor product of outer (G) and inner (H) graph

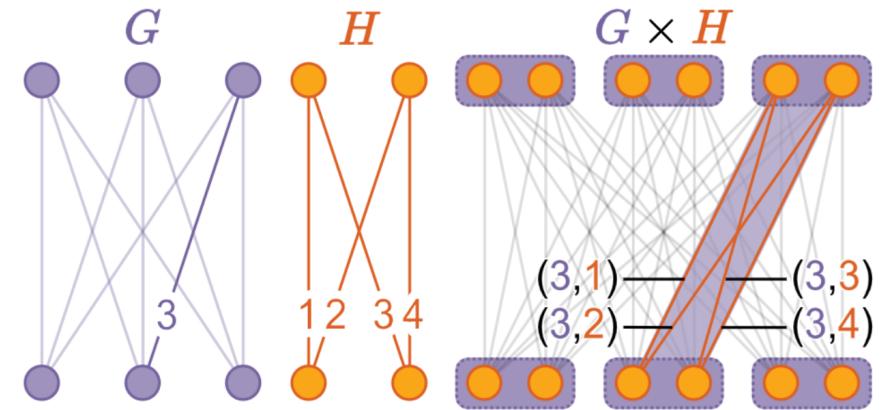


Composed Graphs and Spanners

- Linear size pivot sets or many reverted edges imply linear spanners
- Unsolved: $\log(n)$ or \sqrt{n} pivot edges

Product graphs

- Tensor product of outer (G) and inner (H) graph
- Can interpolate between parameters
 - For shifted matching graph of size $\Theta(\sqrt{n})$, the graph is not solvable by partial edge pivots or reverted edges

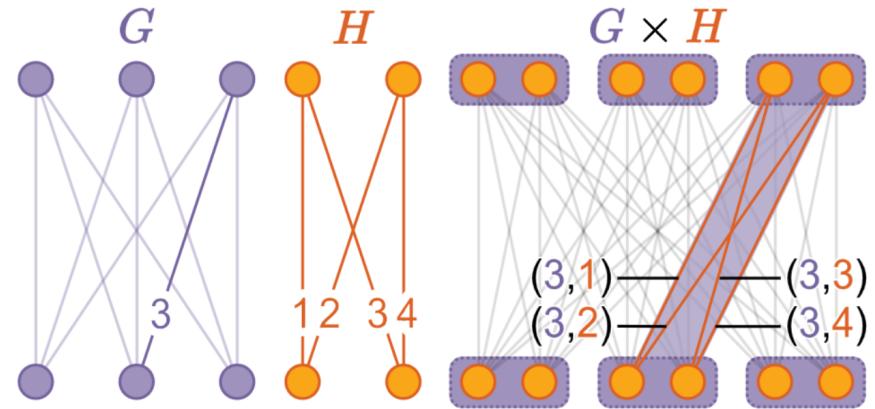


Composed Graphs and Spanners

- Linear size pivot sets or many reverted edges imply linear spanners
- Unsolved: $\log(n)$ or \sqrt{n} pivot edges

Product graphs

- Tensor product of outer (G) and inner (H) graph
- Can interpolate between parameters
 - For shifted matching graph of size $\Theta(\sqrt{n})$, the graph is not solvable by partial edge pivots or reverted edges
- Compose spanner of size $|S_G|n_H + |S_H|n_G$
 - Also works if each edge is expanded by a different inner graph



Outlook

What we did

- First step in years for $\Theta(n)$ spanners in all temporal cliques

Outlook

What we did

- First step in years for $\Theta(n)$ spanners in all temporal cliques
- Full equivalence of cliques and bicliques

Outlook

What we did

- First step in years for $\Theta(n)$ spanners in all temporal cliques
- Full equivalence of cliques and bicliques
- Graphs often can be heavily reduced
 - No extremal matching? \Rightarrow reduce!
 - $\text{In}(e) \cap \text{Out}(e) \in \Omega(n)$? \Rightarrow reduce!
 - $\text{NotRev}_e \in \mathcal{O}(n)$? \Rightarrow solved!
 - Composed structure? \Rightarrow recurse!

Outlook

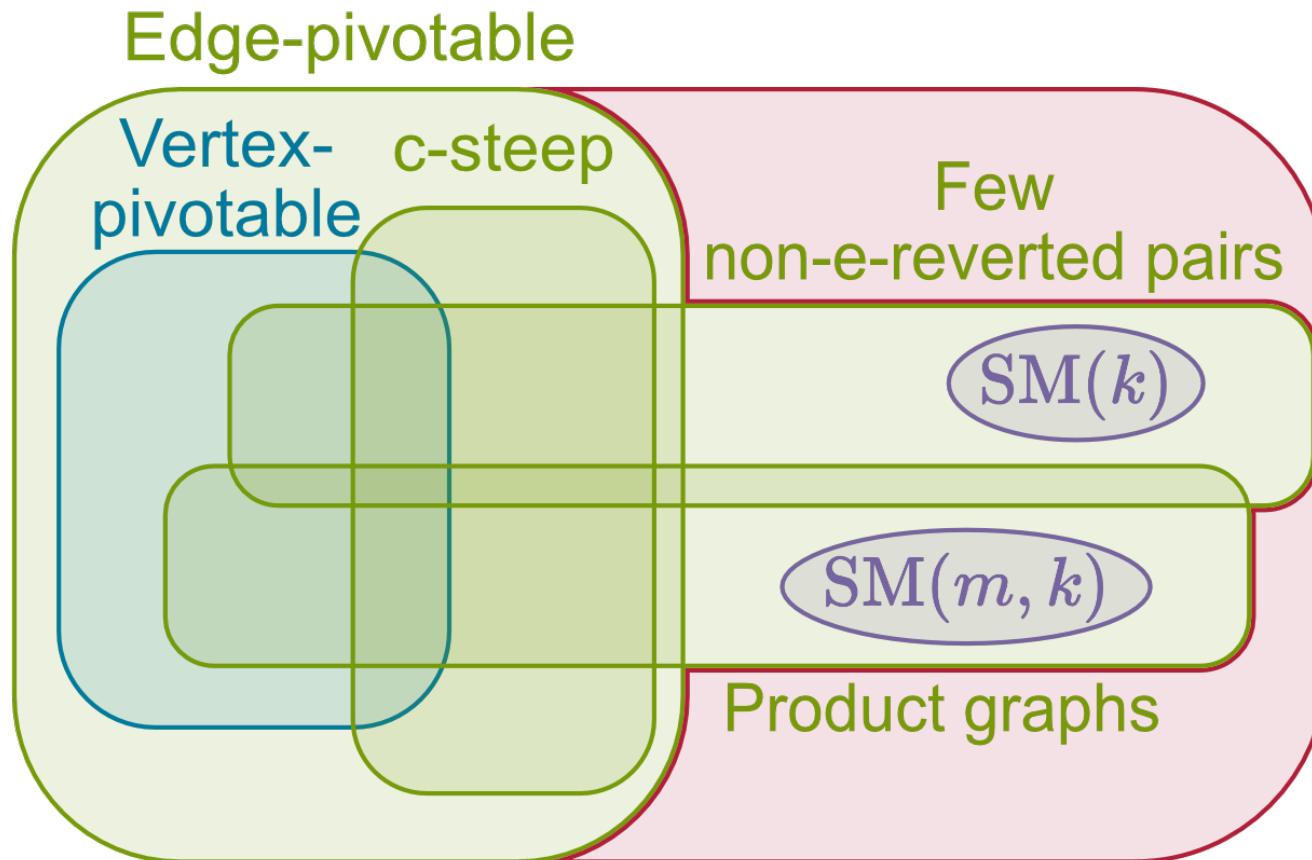
What we did

- First step in years for $\Theta(n)$ spanners in all temporal cliques
- Full equivalence of cliques and bicliques
- Graphs often can be heavily reduced
 - No extremal matching? \Rightarrow reduce!
 - $\text{In}(e) \cap \text{Out}(e) \in \Omega(n)$? \Rightarrow reduce!
 - $\text{NotRev}_e \in \mathcal{O}(n)$? \Rightarrow solved!
 - Composed structure? \Rightarrow recurse!

Future Work

- Tweaking structures may give unsolved graphs
- Allow for weaker conditions
- Compose techniques (on a local level)

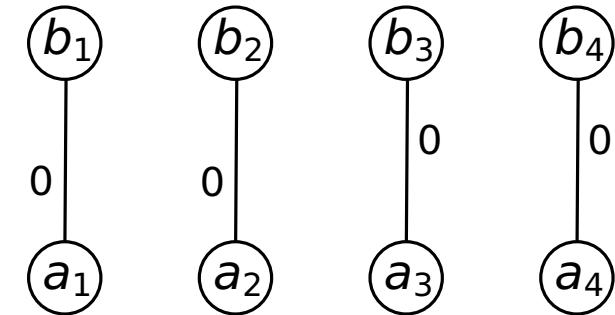
What did we solve?



Shifted Matchings and Reverted Edges

Shifted Matching Graph

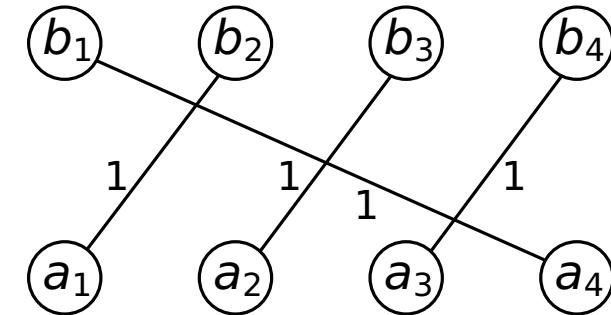
- Label $\lambda(\{a_i, b_j\}) := j - i \bmod n$
- Edges of each timestamp form a matching



Shifted Matchings and Reverted Edges

Shifted Matching Graph

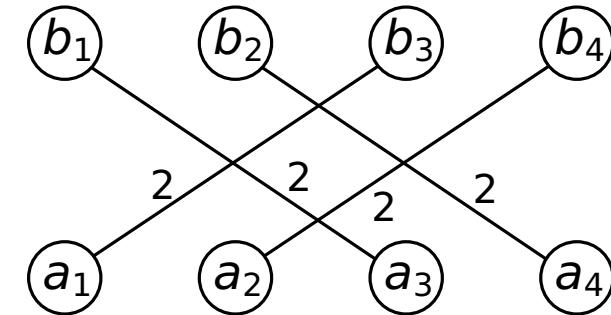
- Label $\lambda(\{a_i, b_j\}) := j - i \bmod n$
- Edges of each timestamp form a matching



Shifted Matchings and Reverted Edges

Shifted Matching Graph

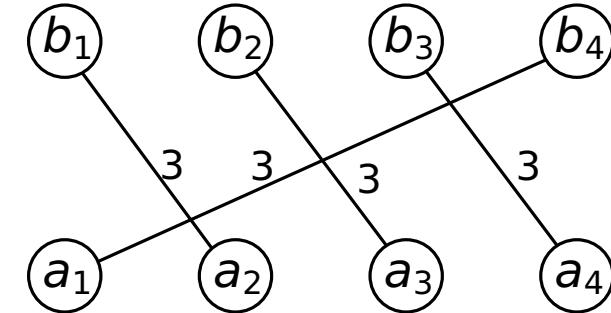
- Label $\lambda(\{a_i, b_j\}) := j - i \bmod n$
- Edges of each timestamp form a matching



Shifted Matchings and Reverted Edges

Shifted Matching Graph

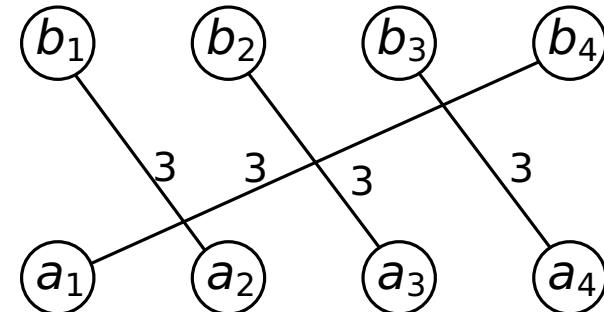
- Label $\lambda(\{a_i, b_j\}) := j - i \bmod n$
- Edges of each timestamp form a matching



Shifted Matchings and Reverted Edges

Shifted Matching Graph

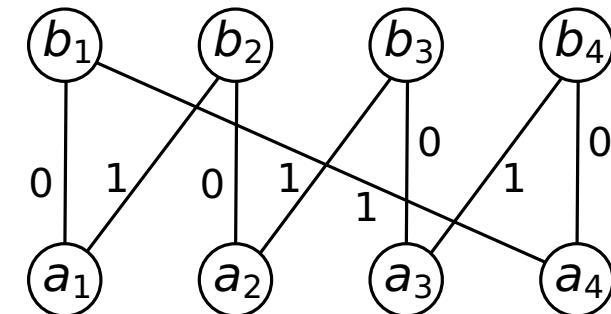
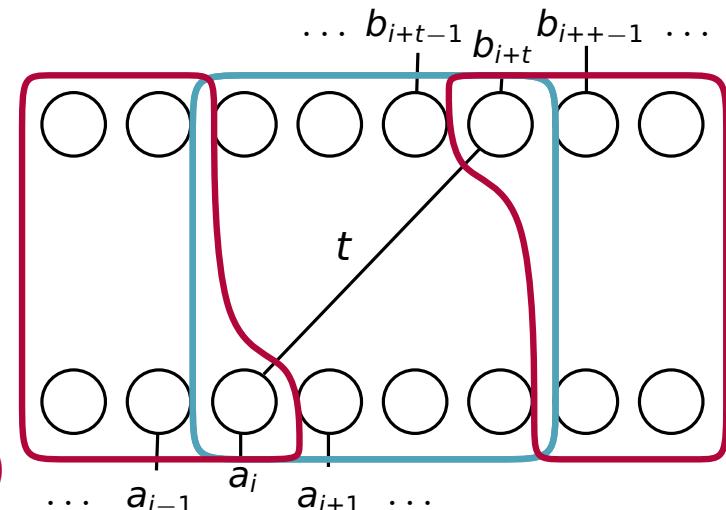
- Label $\lambda(\{a_i, b_j\}) := j - i \bmod n$
- Edges of each timestamp form a matching
- $\text{In}(\{a_i, b_j\}) \cap \text{Out}(\{a_i, b_j\}) = \{a_i, b_j\}$
 - All nodes can be reached **either** before an edge or after an edge



Shifted Matchings and Reverted Edges

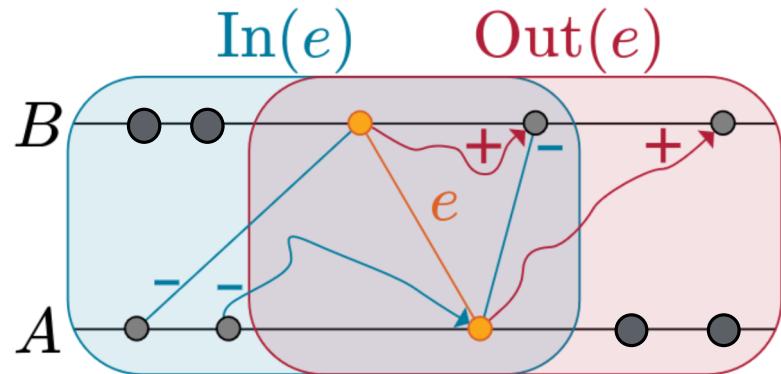
Shifted Matching Graph

- Label $\lambda(\{a_i, b_j\}) := j - i \bmod n$
- Edges of each timestamp form a matching
- $\text{In}(\{a_i, b_j\}) \cap \text{Out}(\{a_i, b_j\}) = \{a_i, b_j\}$
 - All nodes can be reached **either** before an edge or after an edge



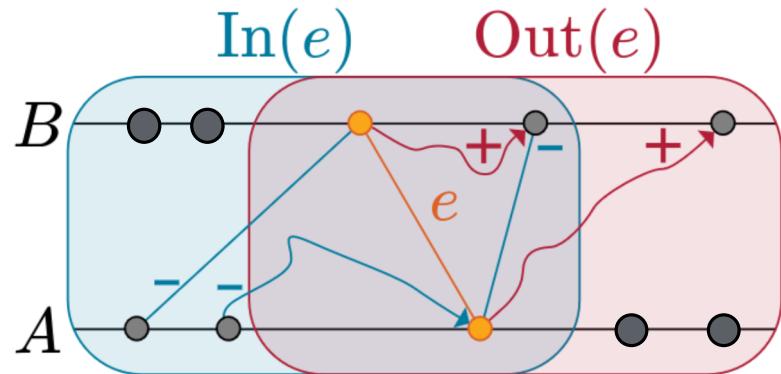
Partial Pivot Edges

- $\text{In}(e), \text{Out}(e)$ can be connected with $\mathcal{O}(|\text{In}(e)| + |\text{Out}(e)|)$ edges
- There is a spanner of size: $\min_{e \in A \otimes B} \left(\mathcal{D} \left(n - \frac{|\text{In}(e)|}{2} \right) + \mathcal{D} \left(n - \frac{|\text{Out}(e)|}{2} \right) + 2|\text{In}(e)| + 2|\text{Out}(e)| - 3 \right)$



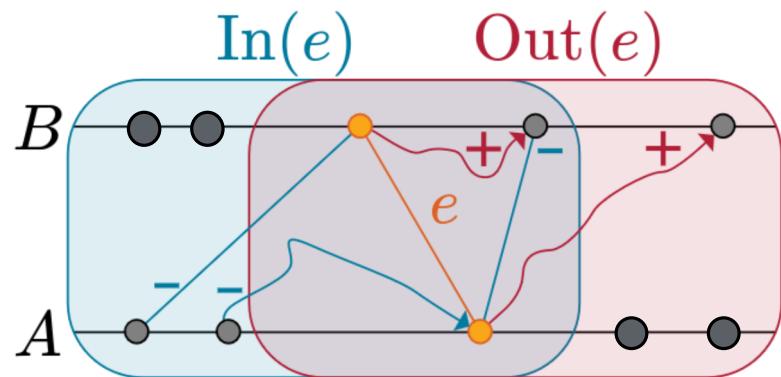
Partial Pivot Edges

- $\text{In}(e), \text{Out}(e)$ can be connected with $\mathcal{O}(|\text{In}(e)| + |\text{Out}(e)|)$ edges
- There is a spanner of size: $\min_{e \in A \otimes B} \left(\boxed{\mathcal{D} \left(n - \frac{|\text{In}(e)|}{2} \right)} + \boxed{\mathcal{D} \left(n - \frac{|\text{Out}(e)|}{2} \right)} + 2|\text{In}(e)| + 2|\text{Out}(e)| - 3 \right)$



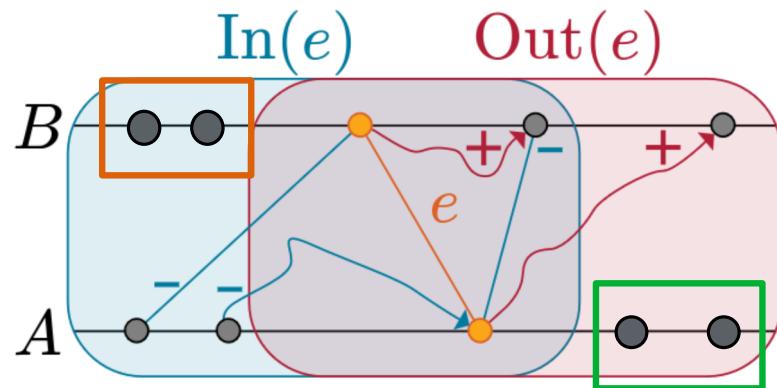
Partial Pivot Edges

- $\text{In}(e), \text{Out}(e)$ can be connected with $\mathcal{O}(|\text{In}(e)| + |\text{Out}(e)|)$ edges
- There is a spanner of size: $\min_{e \in A \otimes B} \left(\boxed{\mathcal{D} \left(n - \frac{|\text{In}(e)|}{2} \right)} + \boxed{\mathcal{D} \left(n - \frac{|\text{Out}(e)|}{2} \right)} + 2|\text{In}(e)| + 2|\text{Out}(e)| - 3 \right)$
 - Connect $\text{In}(e)$ to $\text{Out}(e)$



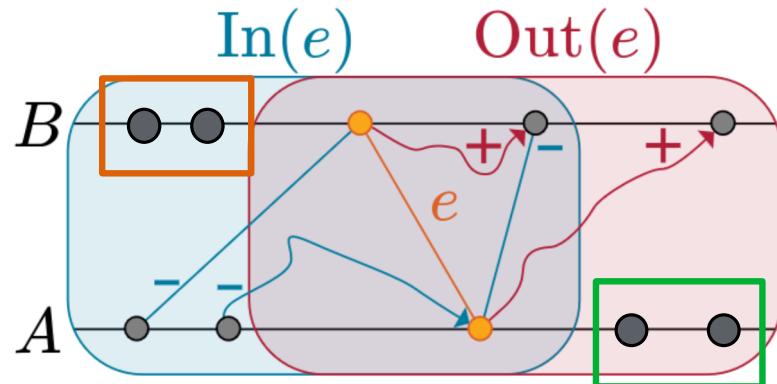
Partial Pivot Edges

- $\text{In}(e), \text{Out}(e)$ can be connected with $\mathcal{O}(|\text{In}(e)| + |\text{Out}(e)|)$ edges
- There is a spanner of size: $\min_{e \in A \otimes B} \left(\mathcal{D} \left(n - \frac{|\text{In}(e)|}{2} \right) + \mathcal{D} \left(n - \frac{|\text{Out}(e)|}{2} \right) + 2|\text{In}(e)| + 2|\text{Out}(e)| - 3 \right)$
 - Connect $\text{In}(e)$ to $\text{Out}(e)$
 - Create instances $G[(A \setminus \text{In}(e)) \sqcup B]$ $G[A \sqcup (B \setminus \text{Out}(e))]$



Partial Pivot Edges

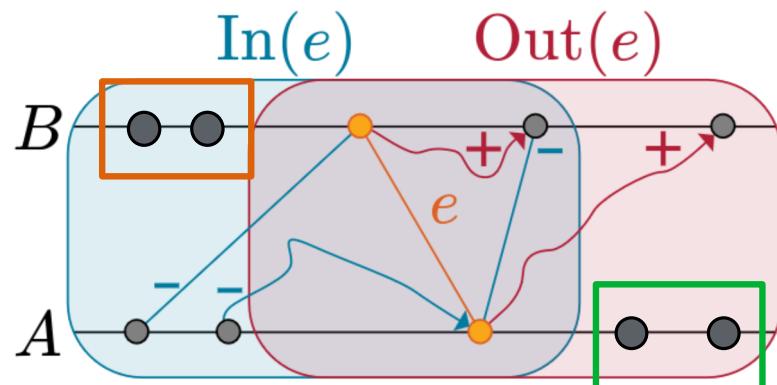
- $\text{In}(e), \text{Out}(e)$ can be connected with $\mathcal{O}(|\text{In}(e)| + |\text{Out}(e)|)$ edges
- There is a spanner of size: $\min_{e \in A \otimes B} \left(\mathcal{D} \left(n - \frac{|\text{In}(e)|}{2} \right) + \mathcal{D} \left(n - \frac{|\text{Out}(e)|}{2} \right) + 2|\text{In}(e)| + 2|\text{Out}(e)| - 3 \right)$
 - Connect $\text{In}(e)$ to $\text{Out}(e)$
 - Create instances $G[(A \setminus \text{In}(e)) \sqcup B]$ $G[A \sqcup (B \setminus \text{Out}(e))]$
 - Size of $n - |\text{In}(e)|/2$ and $n - |\text{Out}(e)|/2$ vertices per side



Partial Pivot Edges

- $\text{In}(e), \text{Out}(e)$ can be connected with $\mathcal{O}(|\text{In}(e)| + |\text{Out}(e)|)$ edges
- There is a spanner of size: $\min_{e \in A \otimes B} \left(\mathcal{D} \left(n - \frac{|\text{In}(e)|}{2} \right) + \mathcal{D} \left(n - \frac{|\text{Out}(e)|}{2} \right) + 2|\text{In}(e)| + 2|\text{Out}(e)| - 3 \right)$
 - Connect $\text{In}(e)$ to $\text{Out}(e)$
 - Create instances $G[(A \setminus \text{In}(e)) \sqcup B]$ $G[A \sqcup (B \setminus \text{Out}(e))]$
 - Size of $n - |\text{In}(e)|/2$ and $n - |\text{Out}(e)|/2$ vertices per side
 - If $|\text{In}(e) \cap \text{Out}(e)| \in \Omega(n)$, include constant many edges for each reduced vertex
 - $\text{In}(e) \cap \text{Out}(e)$ called pivot set of e

 $\text{In}(e) \cap \text{Out}(e) \in \Omega(n) \Rightarrow \text{reduce!}$

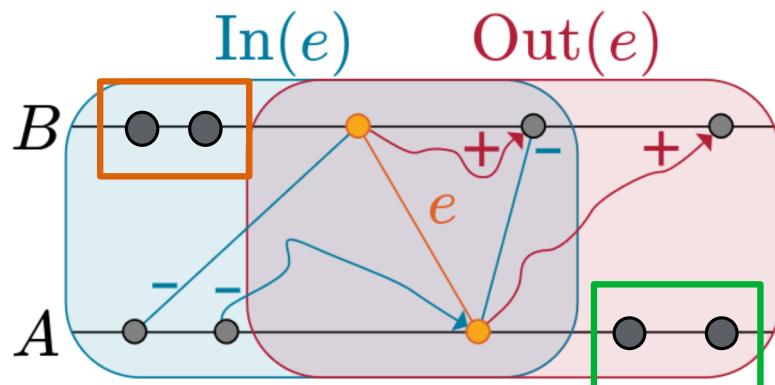


Partial Pivot Edges

- $\text{In}(e), \text{Out}(e)$ can be connected with $\mathcal{O}(|\text{In}(e)| + |\text{Out}(e)|)$ edges
- There is a spanner of size: $\min_{e \in A \otimes B} \left(\mathcal{D} \left(n - \frac{|\text{In}(e)|}{2} \right) + \mathcal{D} \left(n - \frac{|\text{Out}(e)|}{2} \right) + 2|\text{In}(e)| + 2|\text{Out}(e)| - 3 \right)$
 - Connect $\text{In}(e)$ to $\text{Out}(e)$
 - Create instances $G[(A \setminus \text{In}(e)) \sqcup B]$ $G[A \sqcup (B \setminus \text{Out}(e))]$
 - Size of $n - |\text{In}(e)|/2$ and $n - |\text{Out}(e)|/2$ vertices per side
 - If $|\text{In}(e) \cap \text{Out}(e)| \in \Omega(n)$, include constant many edges for each reduced vertex
 - $\text{In}(e) \cap \text{Out}(e)$ called pivot set of e

 $\text{In}(e) \cap \text{Out}(e) \in \Omega(n) \Rightarrow$ reduce!

Is there a graph that has no pivot edges?

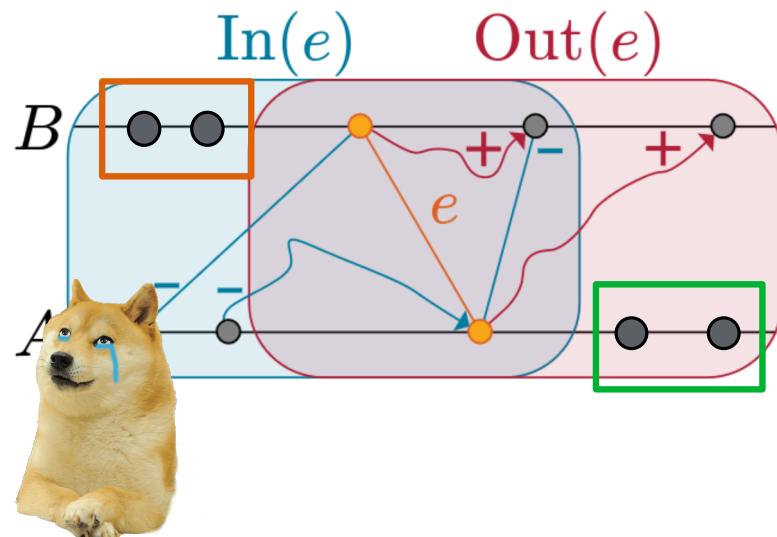


Partial Pivot Edges

- $\text{In}(e), \text{Out}(e)$ can be connected with $\mathcal{O}(|\text{In}(e)| + |\text{Out}(e)|)$ edges
- There is a spanner of size: $\min_{e \in A \otimes B} \left(\boxed{\mathcal{D} \left(n - \frac{|\text{In}(e)|}{2} \right)} + \boxed{\mathcal{D} \left(n - \frac{|\text{Out}(e)|}{2} \right)} + 2|\text{In}(e)| + 2|\text{Out}(e)| - 3 \right)$
 - Connect $\text{In}(e)$ to $\text{Out}(e)$
 - Create instances $\boxed{G[(A \setminus \text{In}(e)) \sqcup B]} \boxed{G[A \sqcup (B \setminus \text{Out}(e))]}$
 - Size of $\boxed{n - |\text{In}(e)|/2}$ and $\boxed{n - |\text{Out}(e)|/2}$ vertices per side
 - If $|\text{In}(e) \cap \text{Out}(e)| \in \Omega(n)$, include constant many edges for each reduced vertex
 - $\text{In}(e) \cap \text{Out}(e)$ called pivot set of e

 $\text{In}(e) \cap \text{Out}(e) \in \Omega(n) \Rightarrow$ reduce!

Is there a graph that has no pivot edges? **Yes**



Partial Pivot Edges

- There is a spanner of size: $\min_{e \in A \otimes B} \left(\mathcal{D} \left(n - \frac{|\text{In}(e)|}{2} \right) + \mathcal{D} \left(n - \frac{|\text{Out}(e)|}{2} \right) + 2|\text{In}(e)| + 2|\text{Out}(e)| - 3 \right)$
- If $|\text{In}(e) \cap \text{Out}(e)| \in \Omega(n)$, reduce the graph

Partial Pivot Edges

- There is a spanner of size: $\min_{e \in A \otimes B} \left(\mathcal{D} \left(n - \frac{|\text{In}(e)|}{2} \right) + \mathcal{D} \left(n - \frac{|\text{Out}(e)|}{2} \right) + 2|\text{In}(e)| + 2|\text{Out}(e)| - 3 \right)$
- If $|\text{In}(e) \cap \text{Out}(e)| \in \Omega(n)$, reduce the graph

Forbidden structures

- Steepness

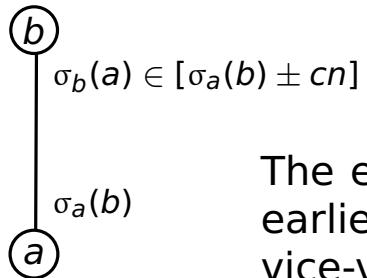
Partial Pivot Edges

- There is a spanner of size: $\min_{e \in A \otimes B} \left(\mathcal{D} \left(n - \frac{|\text{In}(e)|}{2} \right) + \mathcal{D} \left(n - \frac{|\text{Out}(e)|}{2} \right) + 2|\text{In}(e)| + 2|\text{Out}(e)| - 3 \right)$
- If $|\text{In}(e) \cap \text{Out}(e)| \in \Omega(n)$, reduce the graph

Forbidden structures

- Steepness

$$|\{v' \in N(v) \mid i \leq \sigma_{v'}(v) \leq j\}| < j - i + 2cn$$



The edge cannot be much earlier for a than for b (and vice-versa)!

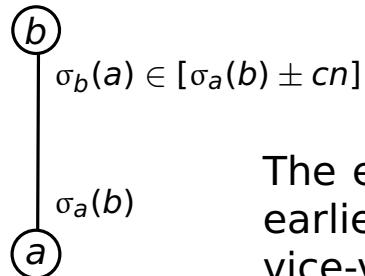
Partial Pivot Edges

- There is a spanner of size: $\min_{e \in A \otimes B} \left(\mathcal{D} \left(n - \frac{|\text{In}(e)|}{2} \right) + \mathcal{D} \left(n - \frac{|\text{Out}(e)|}{2} \right) + 2|\text{In}(e)| + 2|\text{Out}(e)| - 3 \right)$
- If $|\text{In}(e) \cap \text{Out}(e)| \in \Omega(n)$, reduce the graph

Forbidden structures

- Steepness
- (Label spread)
- (Activity width)

$$|\{v' \in N(v) \mid i \leq \sigma_{v'}(v) \leq j\}| < j - i + 2cn$$



The edge cannot be much earlier for a than for b (and vice-versa)!

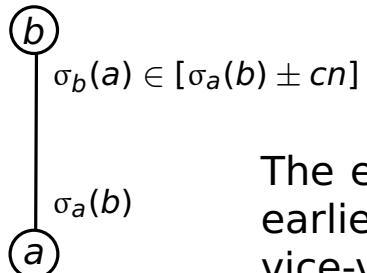
Partial Pivot Edges

- There is a spanner of size: $\min_{e \in A \otimes B} \left(\mathcal{D} \left(n - \frac{|\text{In}(e)|}{2} \right) + \mathcal{D} \left(n - \frac{|\text{Out}(e)|}{2} \right) + 2|\text{In}(e)| + 2|\text{Out}(e)| - 3 \right)$
- If $|\text{In}(e) \cap \text{Out}(e)| \in \Omega(n)$, reduce the graph

Forbidden structures

- Steepness
- (Label spread)
- (Activity width)

$$|\{v' \in N(v) \mid i \leq \sigma_{v'}(v) \leq j\}| < j - i + 2cn$$



The edge cannot be much earlier for a than for b (and vice-versa)!

Is there a graph that has no pivot edges?

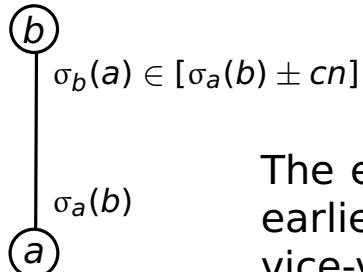
Partial Pivot Edges

- There is a spanner of size: $\min_{e \in A \otimes B} \left(\mathcal{D} \left(n - \frac{|\text{In}(e)|}{2} \right) + \mathcal{D} \left(n - \frac{|\text{Out}(e)|}{2} \right) + 2|\text{In}(e)| + 2|\text{Out}(e)| - 3 \right)$
- If $|\text{In}(e) \cap \text{Out}(e)| \in \Omega(n)$, reduce the graph

Forbidden structures

- Steepness
- (Label spread)
- (Activity width)

$$|\{v' \in N(v) \mid i \leq \sigma_{v'}(v) \leq j\}| < j - i + 2cn$$



The edge cannot be much earlier for a than for b (and vice-versa)!

Is there a graph that has no pivot edges?

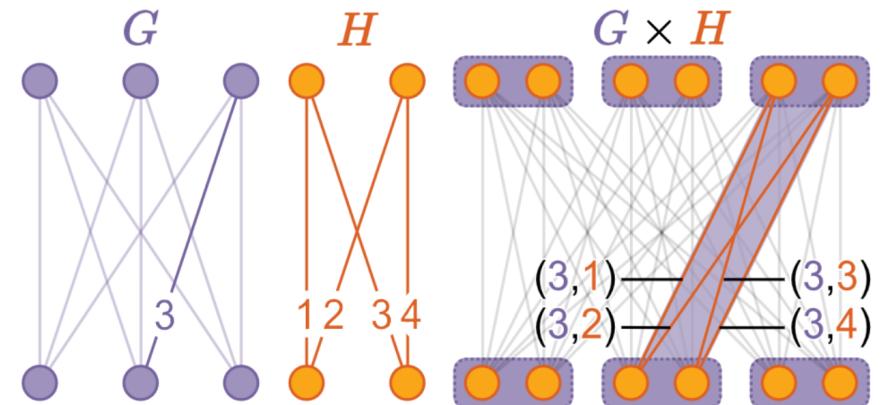
Yes

Composed Graphs—Construction

- Shifted Matchings counterpart for Partial Pivot Edges
- in between: $\log(n)$ or \sqrt{n} pivots / non-reverted edges

Product graphs

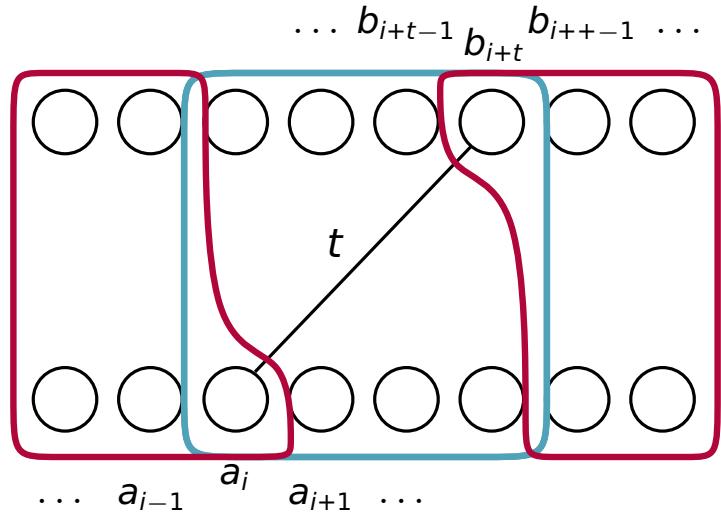
- tensor product of outer (G) and inner (H) graph
- for any $f : \mathbb{N} \rightarrow \mathbb{N}^+$ with $f(n) \in \mathcal{O}(n)$, can construct bi-clique s.t. for all $e \in A \otimes B$:
 - $\text{In}(e) \cap \text{Out}(e) \in \mathcal{O}(f(n))$
 - $|\text{NotRev}_e| \in \Omega(n \cdot f(n))$
- can interpolate between parameters



Composed Graphs—Construction

- $SM(m, k)$: outer graph $SM(m)$, inner graph $SM(k)$

- for any e : $|\text{In}(e) \cap \text{Out}(e)| \leq 2k$
- for any e : $|\text{NotRev}_e| \geq (m-1)\binom{k}{2}$

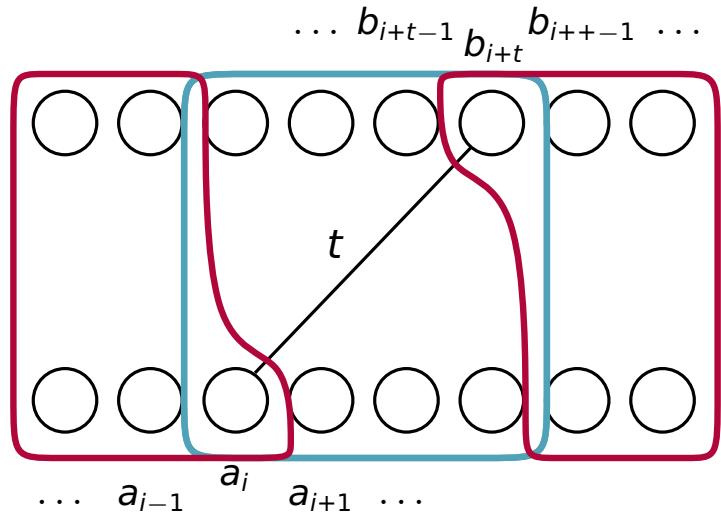


In($\{a_i, b_{i+t}\}$)

Out($\{a_i, b_{i+t}\}$)

Composed Graphs—Construction

- $SM(m, k)$: outer graph $SM(m)$, inner graph $SM(k)$
 - for any e : $|\text{In}(e) \cap \text{Out}(e)| \leq 2k$
 - for any e : $|\text{NotRev}_e| \geq (m-1)\binom{k}{2}$
- let $(g_1, h_1)(g_2, h_2) \dots (g_\ell, h_\ell)$ be temporal
 - $g_1 g_2 \dots g_\ell$ is temporal

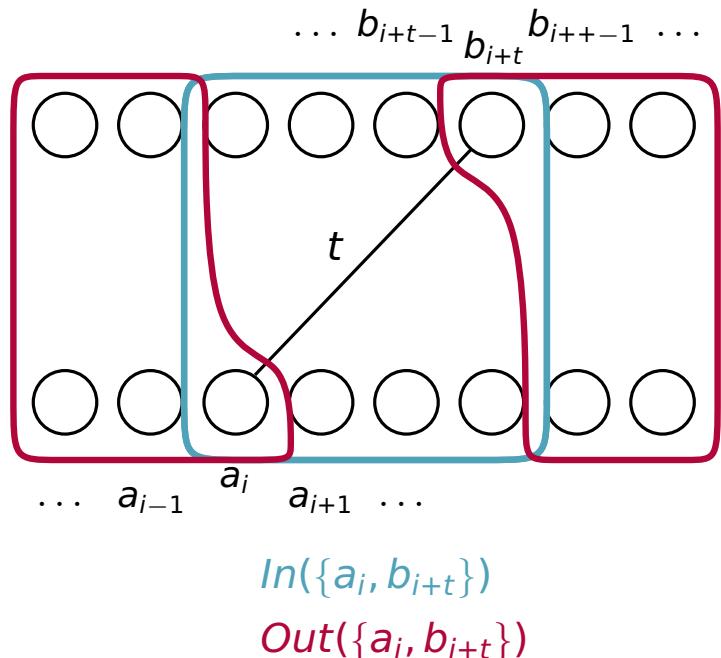


$\text{In}(\{a_i, b_{i+t}\})$

$\text{Out}(\{a_i, b_{i+t}\})$

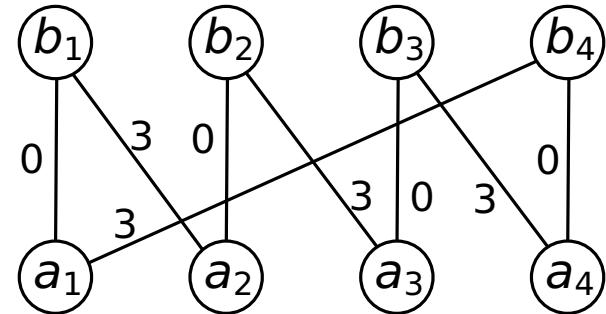
Composed Graphs—Construction

- $SM(m, k)$: outer graph $SM(m)$, inner graph $SM(k)$
 - for any e : $|In(e) \cap Out(e)| \leq 2k$
 - for any e : $|NotRev_e| \geq (m-1)\binom{k}{2}$
- let $(g_1, h_1)(g_2, h_2) \dots (g_\ell, h_\ell)$ be temporal
 - $g_1 g_2 \dots g_\ell$ is temporal
- let $\phi(g, h) = g$ for all $(g, h) \in G \otimes H$
 - $\phi(In(e)) \subseteq In(\phi(e))$
 - $\phi(In(e) \cap Out(e)) \subseteq In(\phi(e)) \cap Out(\phi(e))$
 - $In(\{a_i, b_j\}) \cap Out(\{a_i, b_j\}) = \{a_i, b_j\}$ in SM
 - can only reach two bags



Composed Graphs—Construction

- $SM(m, k)$: outer graph $SM(m)$, inner graph $SM(k)$
 - for any e : $|In(e) \cap Out(e)| \leq 2k$
 - for any e : $|NotRev_e| \geq (m-1) \binom{k}{2}$



Vertex	Edge Label			
	0	1	2	3
a_0	b_0	b_1	b_2	b_3
a_1	b_1	b_2	b_3	b_0
a_2	b_2	b_3	b_0	b_1
a_3	b_3	b_0	b_1	b_2

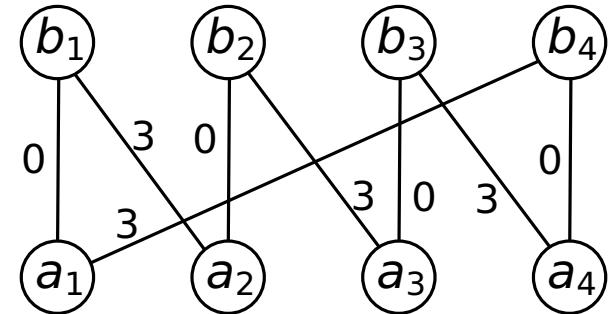
Composed Graphs—Construction

- $SM(m, k)$: outer graph $SM(m)$, inner graph $SM(k)$

- for any e : $|In(e) \cap Out(e)| \leq 2k$
- for any e : $|NotRev_e| \geq (m-1)\binom{k}{2}$

- $e = \{a, b\}$, how many non- e -reverted edges

- let $a', a'' \in A_\ell$ for $1 \leq \ell \leq m-1$ with $a' \prec_b a''$
- $NotRev_e = \{\{a', \pi^+(a'')\} \mid a' \succeq_b a'' \text{ or } \pi^-(a') \succeq_a \pi^+(a'')\}$
- $\pi^-(a') \in B_\ell, \pi^+(a'') \in B_{\ell-1}$, thus $\pi^+(a'') \prec_a \pi^-(a')$
- $|NotRev_e| \geq (m-1)\binom{k}{2}$



Vertex	Edge Label			
	0	1	2	3
a_0	b_0	b_1	b_2	b_3
a_1	b_1	b_2	b_3	b_0
a_2	b_2	b_3	b_0	b_1
a_3	b_3	b_0	b_1	b_2

Composed Graphs—Construction

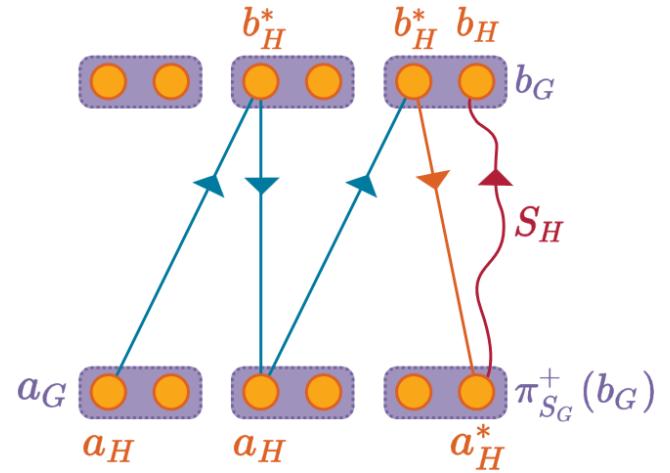
- $SM(m, k)$: outer graph $SM(m)$, inner graph $SM(k)$
 - for any e : $|In(e) \cap Out(e)| \leq 2k$
 - for any e : $|NotRev_e| \geq (m - 1) \binom{k}{2}$
- for any $f : \mathbb{N} \rightarrow \mathbb{N}^+$ with $f(n) \in \mathcal{O}(n)$, can construct bi-clique s.t. for all $e \in A \otimes B$:
 - $In(e) \cap Out(e) \in \mathcal{O}(f(n))$
 - $|NotRev_e| \in \Omega(n \cdot f(n))$

Composed Graphs—Construction

- $SM(m, k)$: outer graph $SM(m)$, inner graph $SM(k)$
 - for any e : $|In(e) \cap Out(e)| \leq 2k$
 - for any e : $|NotRev_e| \geq (m-1) \binom{k}{2}$
- for any $f : \mathbb{N} \rightarrow \mathbb{N}^+$ with $f(n) \in \mathcal{O}(n)$, can construct bi-clique s.t. for all $e \in A \otimes B$:
 - $In(e) \cap Out(e) \in \mathcal{O}(f(n))$
 - $|NotRev_e| \in \Omega(n \cdot f(n))$
- construct $SM(m, k)$ with $m := 1 + \lceil \frac{n}{f(n)} \rceil$, $k := 1 + f(n)$
 - for any e : $|In(e) \cap Out(e)| \leq 2 \cdot (1 + f(n))$
 - $|NotRev_e| \geq \frac{n}{f(n)} \binom{1+f(n)}{2} \geq \frac{nf(n)}{2}$
 - $m \cdot k = \left(1 + \lceil \frac{n}{f(n)} \rceil\right)(1 + f(n)) \geq \frac{n}{f(n)} \cdot f(n) \in \Omega(n)$
 - $m \cdot k \leq \left(2 + \lceil \frac{n}{f(n)} \rceil\right)(1 + f(n)) \leq 2 + 2f(n) + 2n \in \mathcal{O}(n)$

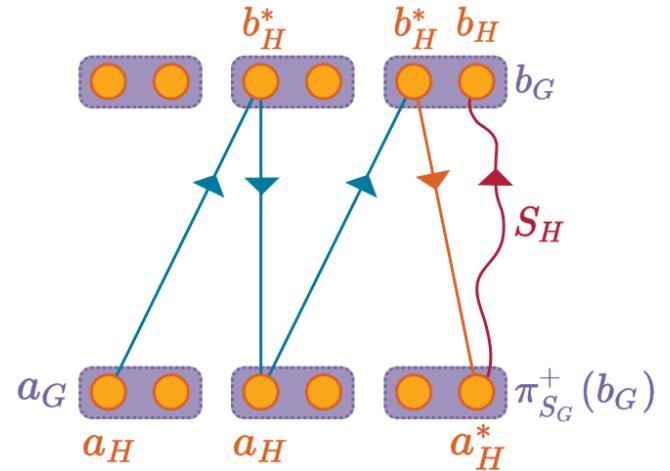
Composed Graphs—Spanners

- tensor product of outer (G) and inner (H) graph
- compose spanner S of size $|S_G|n_H + |S_H|n_G$



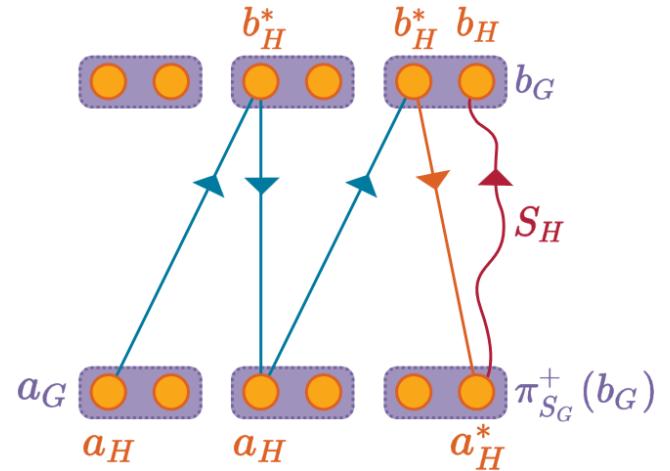
Composed Graphs—Spanners

- tensor product of outer (G) and inner (H) graph
- compose spanner S of size $|S_G|n_H + |S_H|n_G$
 - choose $b_H^* \in B_H, a_H^* \in A_H$ such that $\lambda_H(\{a_H^*, b_H^*\})$ is minimal
 - for $(a_G, b_G) \in S_G$ for all $a_h \in A_H$, add $\{(a_G, a_h), (b_G, b_H^*)\}$ to S
 - for $(a_H, b_H) \in S_H$ for all $b_G \in B_G$, add $\{(\pi_{S_G}^+(b_G), a_H), (b_G, b_H)\}$ to S



Composed Graphs—Spanners

- tensor product of outer (G) and inner (H) graph
- compose spanner S of size $|S_G|n_H + |S_H|n_G$
 - choose $b_H^* \in B_H, a_H^* \in A_H$ such that $\lambda_H(\{a_H^*, b_H^*\})$ is minimal
 - for $(a_G, b_G) \in S_G$ for all $a_h \in A_H$, add $\{(a_G, a_h), (b_G, b_H^*)\}$ to S
 - for $(a_H, b_H) \in S_H$ for all $b_G \in B_G$, add $\{(\pi_{S_G}^+(b_G), a_H), (b_G, b_H)\}$ to S
- path from $(a_G, a_H) \in A_G \times A_H$ to $(b_G, b_H) \in B_G \times B_H$
 - use path $a_G \rightarrow b_G$ from S_G , second last in $(a'_G, a_H) \in A$
 - if $a'_G \neq \pi_{S_G}^+(b_G)$ then next $(b_G, b_H^*), (\pi_{S_G}^+(b_G), a_H^*)$
 - in bags $\pi_{S_G}^+(b_G), b_G, b_H$, use spanner S_H



Composed Graphs—Spanners

- tensor product of outer (G) and inner (H) graph
- compose spanner S of size $|S_G|n_H + |S_H|n_G$
 - choose $b_H^* \in B_H, a_H^* \in A_H$ such that $\lambda_H(\{a_H^*, b_H^*\})$ is minimal
 - for $(a_G, b_G) \in S_G$ for all $a_h \in A_H$, add $\{(a_G, a_h), (b_G, b_H^*)\}$ to S
 - for $(a_H, b_H) \in S_H$ for all $b_G \in B_G$, add $\{(\pi_{S_G}^+(b_G), a_H), (b_G, b_H)\}$ to S
- path from $(a_G, a_H) \in A_G \times A_H$ to $(b_G, b_H) \in B_G \times B_H$
 - use path $a_G \rightarrow b_G$ from S_G , second last in $(a'_G, a_H) \in A$
 - if $a'_G \neq \pi_{S_G}^+(b_G)$ then next $(b_G, b_H^*), (\pi_{S_G}^+(b_G), a_H^*)$
 - in bags $\pi_{S_G}^+(b_G), b_G, b_H$, use spanner S_H
- works for arbitrary composed graphs, adapt b_H^*, a_H^* per bag

