

Testing Quasiperiodicity

SPIRE 2025

Ben Bals
Centrum Wiskunde & Informatica and VU Amsterdam

Quasiperiodicity

Period

abb~~x~~abbaabba

Quasiperiod

abbabbaabba~~x~~

Seed

abbabbaabba
.....

Strict

↓ Loose

Classic algo

Does a string S have a small quasiperiod?

$\mathcal{O}(n)$ Apostolico, Farach, Iliopoulos, 1991

Property testing

If I can only look at a few positions of S , can I test if it is **likely** quasiperiodic or not?

If S has small quasiperiod:

Always output YES

If S is **far** from having a small quasiperiod:

Output No with $p = 3/4$

need to change at least an ϵ fraction of all letters

..... Later in the talk
Streaming algorithm

Main Result 1

Theorem. There is a tester deciding whether a string $S \in \Sigma^n$ has a quasiperiod of length at most q using $\mathcal{O}(q^3\epsilon^{-1} \log q)$ queries, where $\epsilon \in \mathbb{R}^+$ is the distance parameter.

Based on cool combinatorics!

How can a cover self-overlap?

abbaabba

abbabba

abababab

ababab

Write $PS(C)$ for the period lengths of C .

Core insight. If C covers S , then $\gcd(PS(C))$ divides the difference between the occurrences of C in S .

What about the other direction?

Frobenius The Chicken McNugget Numbers

What's the biggest number that's not a sum of 6, 9 and 20?

43!

Brady Haran, Numberphile, 2012

Chicken McNugget Number

Theorem [Erdős & Graham, '72]. Let $A \subseteq \mathbb{N}^+$ be bounded by $q \in \mathbb{N}$. Then any number $x \geq 2q^3$ such that $\gcd(A)|x$ can be written as a conical combination of A .

Idea 1: Split string into overlapping fragments of length $4q^3$

Observe: If C covers all fragments, then it covers the string

Idea 2: Sample $\tilde{\mathcal{O}}(q/\epsilon)$ fragments and check that C

- (1) covers of all of them, and
- (2) the indices align.

Easy: If C is a cover, this always accepts.

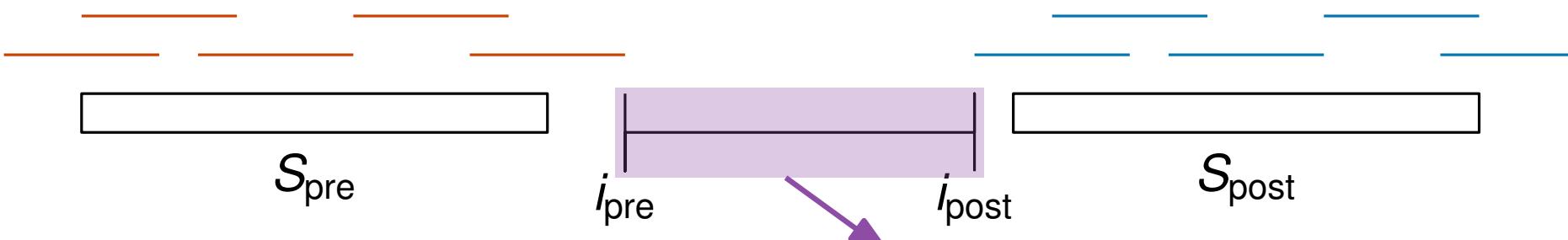
Harder: Why does it reject if S is ϵ -far from having a small quasiperiod?

Lemma. If S is ϵ -far from $QP_{\Sigma}(q)$, for some $q \in \mathbb{N}$, the set $S' \subseteq S$ of C -consistent fragments of S has size at most $\mathcal{O}((1 - \epsilon/2) \cdot n/q^3)$.

Applying the Nuggets

Lemma. If S is ϵ -far from $QP_{\Sigma}(q)$, for some $q \in \mathbb{N}$, the set $S' \subseteq S$ of C -consistent fragments of S has size at most $\mathcal{O}((1 - \epsilon/2) \cdot n/q^3)$.

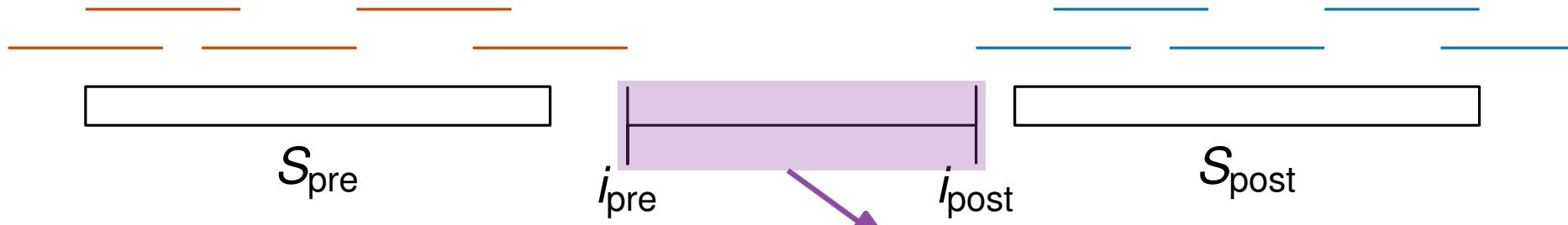
- For contradiction: Assume there are few C -inconsistent fragments \mathcal{T}
 - $|\mathcal{T}| \leq \frac{\epsilon n}{4q^3}$
- Goal: Then S is not ϵ -far from having a small quasiperiod
- Strategy: Iterate over all inconsistent fragments and **fix** them



We can make a string with quasiperiod C of this length!

Applying the Nuggets (2)

Lemma. If S is ϵ -far from $QP_{\Sigma}(q)$, for some $q \in \mathbb{N}$, the set $S' \subseteq S$ of C -consistent fragments of S has size at most $\mathcal{O}((1 - \epsilon/2) \cdot n/q^3)$.



We can make a string with quasiperiod C of this length!

Theorem [Erdős & Graham, '72]. Let $A \subseteq \mathbb{N}^+$ be bounded by $q \in \mathbb{N}$. Then any number $x \geq 2q^3$ such that $\gcd(A)|x$ can be written as a conical combination of A .

By choice of the fragments

By C -consistency

Theorem.

Let $x \geq 2q^3$ and $\gcd(\text{PS}(C))|x$, then there is a string of length x with quasiperiod C .

Streaming!

Theorem. For any string $S \in \Sigma^n$ and any $q \in \mathbb{N}$, there is a one-pass streaming algorithm for computing the shortest cover C of S , if $|C| \leq q$, that uses $\mathcal{O}(q)$ space and runs in $\mathcal{O}(n)$ time w.h.p.

Randomness comes from an internal data structure, we don't sample here!

State of the art: $\mathcal{O}(\sqrt{n \log n})$ space and $\mathcal{O}(n \log^2 n)$ time

Gawrychowski, Radoszewski, Starikovskaya, 2019

Take aways

Combinatorial Insights for Better Algorithms

[Erdős & Graham, '72]

Have Fun

Insights Often Work In Many Models

Property Testing

Streaming

References

Brady Haran. How to order 43 Chicken McNuggets (Frobenius numbers) - Numberphile, 2012. <https://www.youtube.com/watch?v=vNTSugyS038>.

Paul Erdős and Ronald Graham. On a linear Diophantine problem of Frobenius. *Acta Arithmetica*, 21:399–408, 1972.

Pawel Gawrychowski, Jakub Radoszewski, and Tatiana Starikovskaya. Quasi-periodicity in streams. *CPM*, 2019.

Oded Lachish and Ilan Newman. Testing periodicity. *Algorithmica*, 60(2):401–420, 2011.

Alberto Apostolico, Martin Farach, and Costas S. Iliopoulos. Optimal superprimitivity testing for strings. *Inf. Process. Lett.*, 39(1):17–20, 1991.

Bonus: Overlaps

