

When is String Reconstruction using de Bruijn Graphs Hard?

ESA 2025

Ben Bals

Centrum Wiskunde & Informatica and VU Amsterdam

What math has done for physics, computer science will do for biology.

Stanislaw Ulam

String Reconstruction

ATTAAATTATA

↓
 $k=3$

ATT TAA ATT
TTA TTA TAT
AAT

AT

TT

TA

AA

Theorem. Eulerian trails in de Bruijn graphs are exactly the string reconstructions.

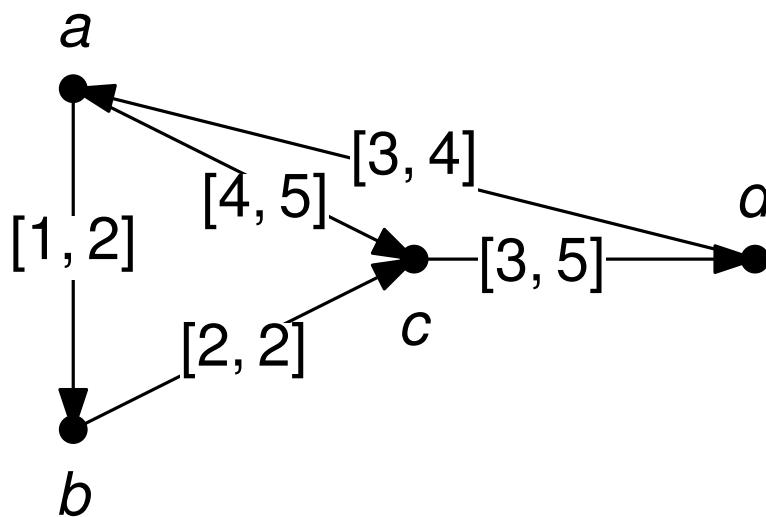
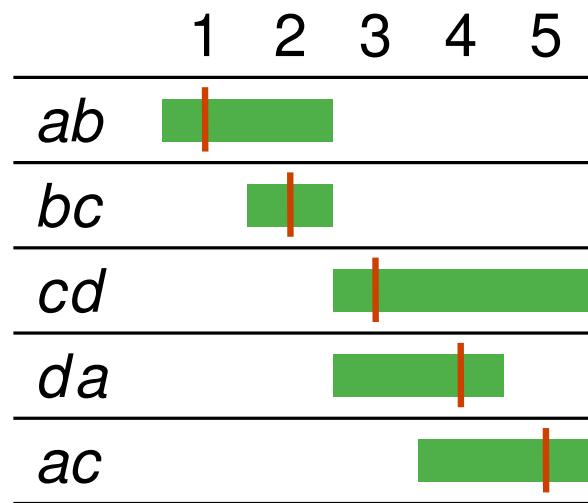
What if I know that ATT always appears towards the start?

Problem. Eulerian Trails in Digraphs with Interval Cost functions (diET)

Given: Directed graph $G = (V, E)$, interval function $c: E \rightarrow \mathcal{I}_m$

Decide: Is there an Eulerian trail $P = e_1 \dots e_m$ in G such that for all $t \in [m]$, $t \in c(e_t)$?

Map edge e to interval $c(e)$ from $[1, m]$



For some timestep t , we call an edge e **available at t** if $t \in c(e)$.

Our Results

Parameters

w Width of the largest interval in c

k Fragment length for the dBG

	Known	Our Results	
Algorithmic	$\mathcal{O}(m \cdot 4^w)$ [BPSS02] [BM23]	$\mathcal{O}(m \cdot 4^w \log w/k)$	 It's enough if w/k is small! In practice, k is often large (e.g., accurate DNA reads)
Hardness	NP-hard for dBG with $ \Sigma \geq 4$ [BPSS02]	NP-hard for dBG with $ \Sigma \geq 2$	 Not related to k at all

(Hiding non-exponential factors of w .)

Also in the paper

Counting extensions for state-of-the-art and our new algorithms

Ben-Dor et al. Algorithm

Theorem. There is a $\mathcal{O}(m \cdot w^{1.5} 4^w)$ -time algorithm for diET.

Construct a state graph

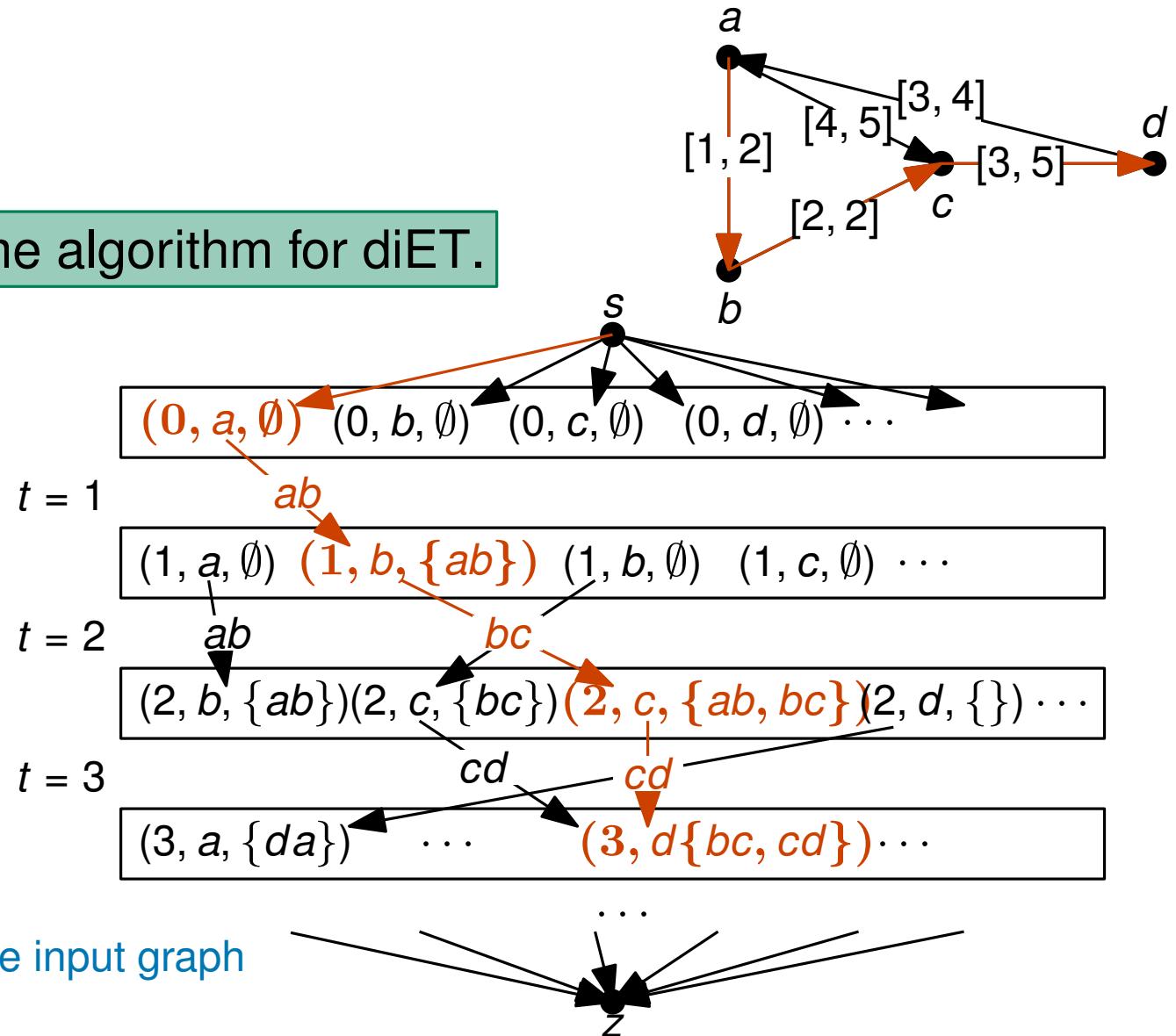
Every state (t, v, S) consists of

- t — a timestep
- v — a vertex
- $S \subseteq E$ — a set of unavailable edges

Add the state edge $(t, v, S) \rightarrow (t + 1, u, S')$ if

- vu is an edge available at $t + 1$
- vu is not forbidden (i.e., not in S)
- S' includes $v \rightarrow u$ and all edges from S that are still available at $t + 1$

Path through the state graph \equiv Eulerian trail in the input graph



Core insight. We do not need to remember edges that are not available anymore.

Theorem. There is a $\mathcal{O}(m \cdot w^{1.5} 4^w)$ —time algorithm for diET.

Core insight. We do not need to remember edges that are not available anymore.

Lemma. At any timestep t , there are at most $2w - 1$ available edges.

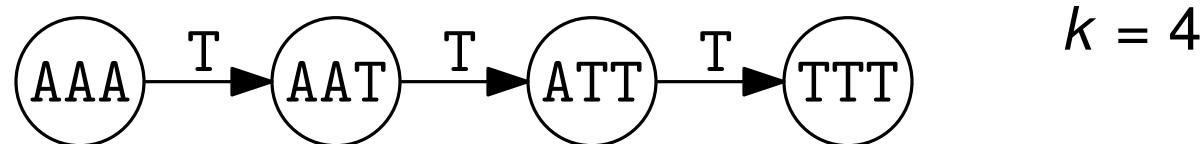
Proof idea.

- Any edge is available for at most w timesteps.
- Therefore, if it is available in t , it must be used within the interval $[t - w + 1, t + w]$.
- This interval has width $2w - 1$.

Corollary. At any timestep, there are at most $2^{2w-1} \leq 4^w$ choices for S .

In dBGs, a node already encodes the labels of the last $k - 1$ edges!

How many paths of length 3 are there between these two nodes?



Core insight. We can remember the last w edges as a string!

Every state (t, v, S) consists of

- t — a timestep
- $\alpha \in \Sigma^{w+k-1}$ — a string
 - The substrings of length k uniquely describe the last w edges
 - Naively describing these edges would take kw characters

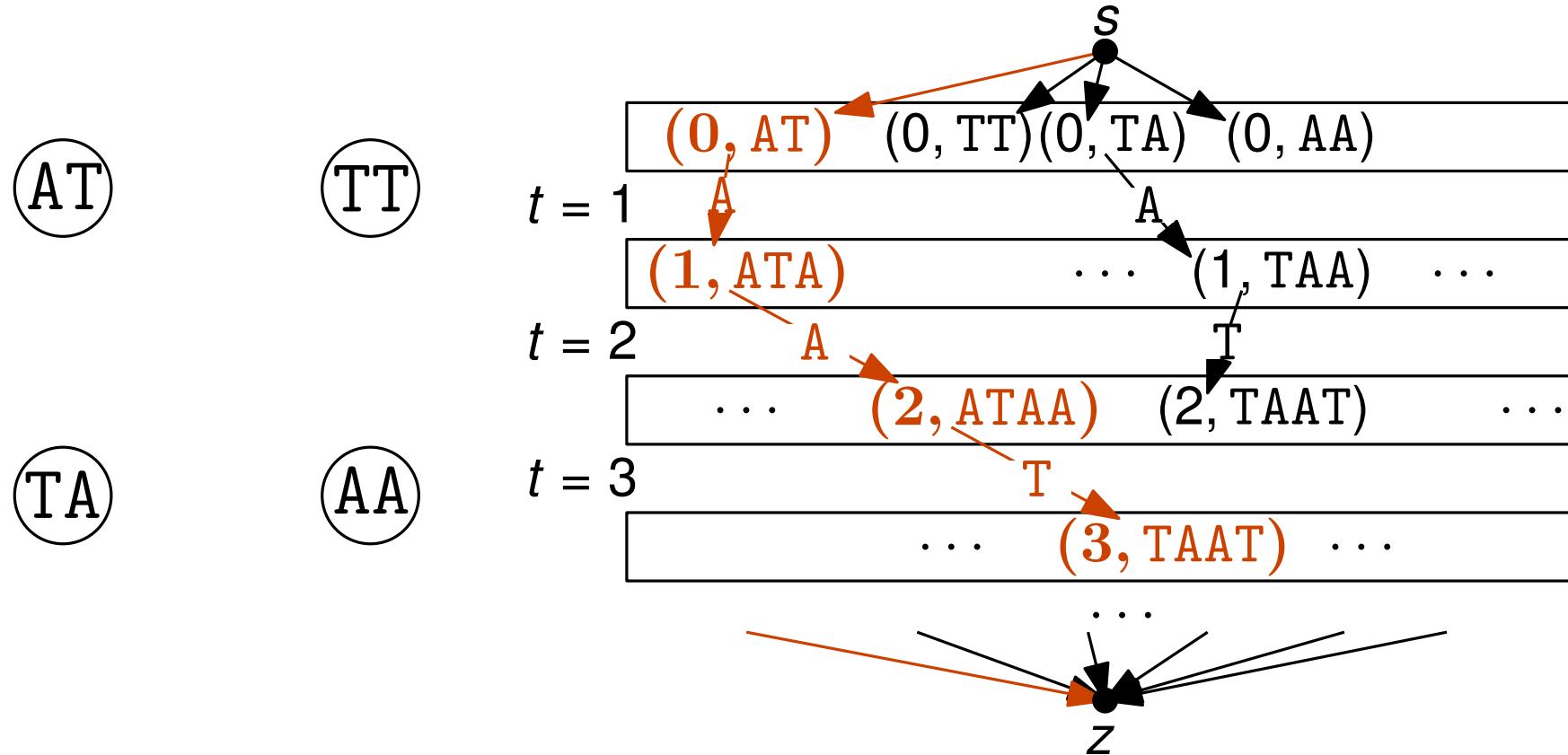
This is where the improvement by a factor k comes from!

Theorem. There is a $\mathcal{O}(m \cdot 4^{\frac{w \log w}{k}})$ —time algorithm for diET on dBGs.

Doing Better With Combinatorics

Core insight. We can remember the last w edges as a string!

Theorem. There is a $\mathcal{O}(m \cdot 4^{\frac{w \log w}{k}})$ –time algorithm for diET on dBGs.



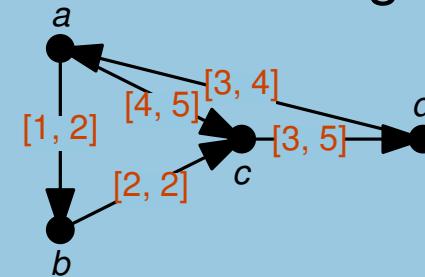
Summary

String Reconstruction using dBGs

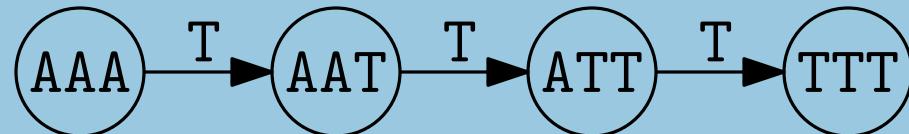
ATTAAATTATA



Use Parametrization to Capture Domain Knowledge



Combinatorial Insights for Faster Algorithms



References

[BM23] Bumpus, Benjamin Merlin, and Kitty Meeks. “Edge Exploration of Temporal Graphs.” arXiv:2103.05387. Preprint, arXiv, November 17, 2021. <https://doi.org/10.48550/arXiv.2103.05387>.

[BPSS02] Ben-Dor, A., I. Pe’er, R. Shamir, and R. Sharan. “On the Complexity of Positional Sequencing by Hybridization.” *Journal of Computational Biology* 8, no. 4 (2001): 361–71. <https://doi.org/10.1089/106652701752236188>.

[HFLSP96] Hannenhalli, Sridhar, William Feldman, Herbert F. Lewis, Steven S. Skiena, and Pavel A. Pevzner. “Positional Sequencing by Hybridization.” *Bioinformatics* 12, no. 1 (1996): 19–24. <https://doi.org/10.1093/bioinformatics/12.1.19>.

Bonus: Another Application

Differential Privacy

Goal: Share data while

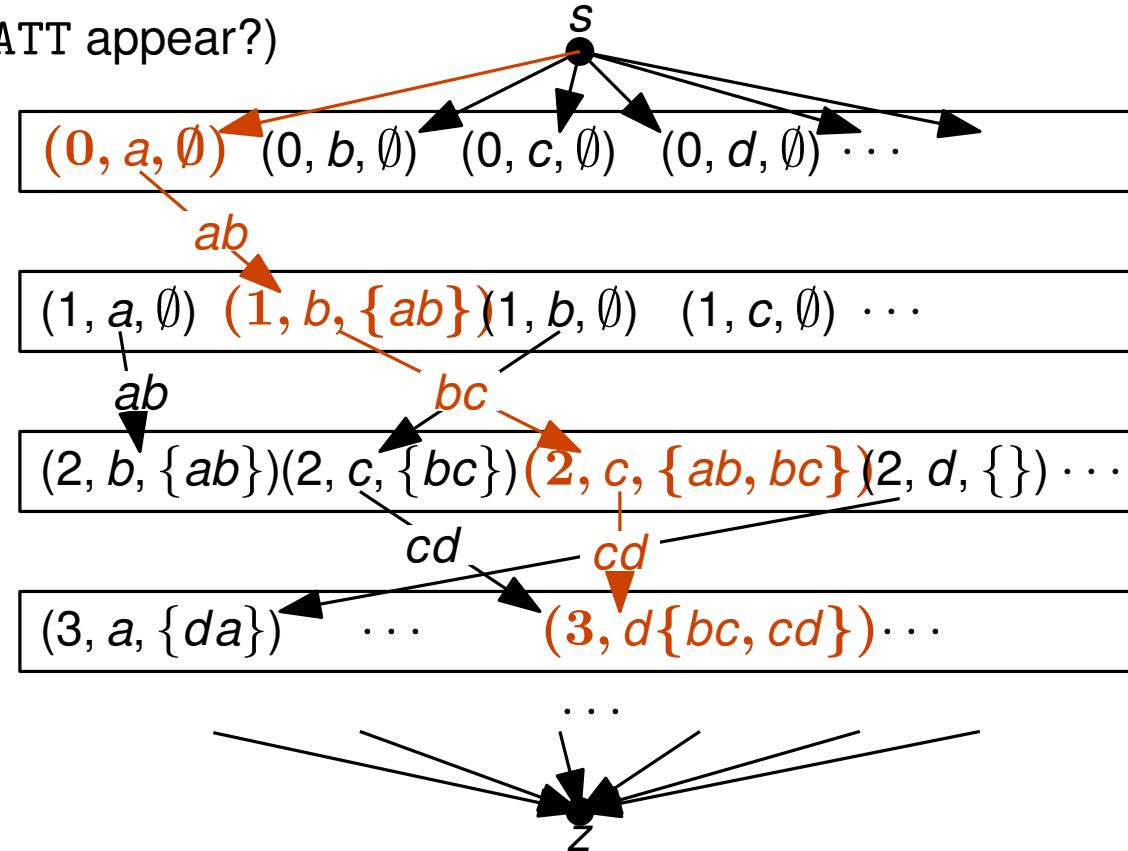
- Allowing pattern matching (e.g., "how many times does ATT appear?")
- Preventing reconstruction

Idea: Share all substrings of length k such that

- There are many possible reconstructions (over some threshold z)
- \equiv where there are many Eulerian trails in the dBG
- This should also hold given some domain knowledge c

Approach: Count ETs (with or without c)

- Count $s-t$ -paths in state graph



Bonus: NP-Hardness for $|\Sigma| = 2$

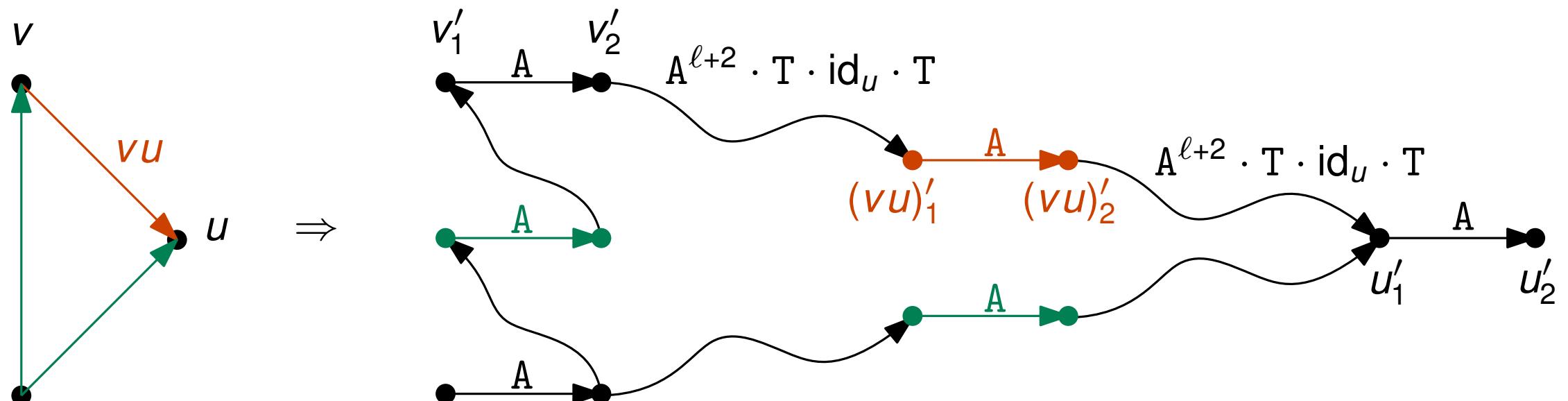
Set $\ell := \lceil \log |V| \rceil$. Let $id_v \in \{A, T\}^\ell$ be a unique id for each $v \in V$

$v'_1 := \boxed{A^{\ell+3} \mid T \mid id_v \mid T \mid A^{\ell+3} \mid T \mid id_v \mid T}$

$v'_2 := \boxed{A^{\ell+2} \mid T \mid id_v \mid T \mid A^{\ell+3} \mid T \mid id_v \mid T \mid A}$

$(vu)'_1 := \boxed{A^{\ell+3} \mid T \mid id_v \mid T \mid A^{\ell+3} \mid T \mid id_u \mid T}$

$(vu)'_2 := \boxed{A^{\ell+2} \mid T \mid id_v \mid T \mid A^{\ell+3} \mid T \mid id_u \mid T \mid A}$



Bonus: NP-Hardness for $|\Sigma| = 2$

Three types of edges e

- Always available $c(e) = [1, m]$
- Only early $c(e) = [1, \tau]$
- Only late $c(e) = [\tau + 1, m]$

Idea. Choose τ such that is exactly enough time to visit n nodes with $n - 1$ edges

